Skip to main content
Log in

Constructing a unifying theory of dynamic programming DCOP algorithms via the generalized distributive law

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

In this paper we propose a novel message-passing algorithm, the so-called Action-GDL, as an extension to the generalized distributive law (GDL) to efficiently solve DCOPs. Action-GDL provides a unifying perspective of several dynamic programming DCOP algorithms that are based on GDL, such as DPOP and DCPOP algorithms. We empirically show how Action-GDL using a novel distributed post-processing heuristic can outperform DCPOP, and by extension DPOP, even when the latter uses the best arrangement provided by multiple state-of-the-art heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aji S. M., McEliece R. J. (2000) The generalized distributive law. IEEE Transactions on Information Theory 46(2): 325–343

    Article  MathSciNet  MATH  Google Scholar 

  2. Amir, E. (2001). Efficient approximation for triangulation of minimum treewidth. In: UAI, pp. 7–15.

  3. Atlas, J., & Decker, K. (2007). A complete distributed constraint optimization method for non-traditional pseudotree arrangements. In: AAMAS, pp. 741–784.

  4. Barbosa V. (1996) An introduction to distributed algorithms. The MIT Press, Cambridge

    Google Scholar 

  5. Cano, A., & Moral, S. (1994). Heuristic algorithms for the triangulation of graphs. In: IPMU, pp. 98–107.

  6. Dechter R. (2003) Constraint processing. Morgan Kaufmann, San Francisco

    Google Scholar 

  7. Flores, M. J., Gámez, J. A., & Olesen, K. G. (2003). Incremental compilation of bayesian networks. In: UAI, pp. 233–240.

  8. Jensen, F. V., & Jensen, F. (1994). Optimal junction trees. In: UAI, pp. 360–366.

  9. Junges, R., & Bazzan, A. L. C. (2008). Evaluating the performance of DCOP algorithms in a real world, dynamic problem. In: AAMAS (Vol. 2, pp. 599–606).

  10. Maheswaran, R. T., Tambe, M., Bowring, E., Pearce, J. P., & Varakantham, P. (2004). Taking DCOP to the real world: Efficient complete solutions for distributed multi-event scheduling. In: AAMAS, pp. 310–317.

  11. Mailler, R., & Lesser, V. R. (2004). Solving distributed constraint optimization problems using cooperative mediation. In: AAMAS, pp. 438–445.

  12. Modi P. J., Shen W. M., Tambe M., Yokoo M. (2005) Adopt: Asynchronous distributed constraint optimization with quality guarantees. Artif Intell 161(1–2): 149–180

    Article  MathSciNet  MATH  Google Scholar 

  13. Pearl J. (1988) Probabilistic reasoning in intelligent systems. Morgan Kaufmann Publishers Inc, San Francisco, CA

    Google Scholar 

  14. Petcu, A. (2007). A class of algorithms for distributed constraint optimization. PhD thesis, EPFL, Lausanne.

  15. Petcu, A., & Faltings, B. (2005). A scalable method for multiagent constraint optimization. In: IJCAI, pp. 266–271.

  16. Santoro, N. (2006). Design and analysis of distributed algorithms. (Wiley series on parallel and distributed computing) Chicheste: Wiley-Interscience.

  17. Shafer G., Shenoy P. P. (1990) Probability propagation. Ann Math Artif Intell 2: 327–351

    Article  MathSciNet  MATH  Google Scholar 

  18. Vinyals, M., Rodriguez-Aguilar, J., & Cerquides, J. (2008). Proving the equivalence of Action-GDL and DPOP. http://www.iiia.csic.es/files/pdfs/TRR200804.pdf.

  19. Vinyals, M., Rodriguez-Aguilar, J. A., & Cerquides, J. (2009). Generalizing DPOP: Action-GDL, a new complete algorithm for DCOPs. In: OPTMAS second international workshop on optimization in agent systems.

  20. Viterbi A. (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 13(2): 260–269

    Article  MATH  Google Scholar 

  21. Yeoh, W., Felner, A., & Koenig, S. (2009). Idb-adopt: A depth-first search dcop algorithm. In: CSCLP, Lecture notes in computer science 5655, 2009, pp 132–146.

  22. Yin, Z. (2008). USC dcop repository. http://teamcore.usc.edu/dcop.

  23. Zhang W., Wang G., Xing Z., Wittenburg L. (2005) Distributed stochastic search and distributed breakout: Properties, comparison and applications to constraint optimization problems in sensor networks. Artif Intell 161(1–2): 55–87

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meritxell Vinyals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinyals, M., Rodriguez-Aguilar, J.A. & Cerquides, J. Constructing a unifying theory of dynamic programming DCOP algorithms via the generalized distributive law. Auton Agent Multi-Agent Syst 22, 439–464 (2011). https://doi.org/10.1007/s10458-010-9132-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10458-010-9132-7

Keywords

Navigation