Skip to main content
Log in

Fair solutions for some multiagent optimization problems

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

We consider optimization problems in a multiagent setting where a solution is evaluated with a vector. Each coordinate of this vector represents an agent’s utility for the solution. Due to the possible conflicts, it is unlikely that one feasible solution is optimal for all agents. Then, a natural aim is to find solutions that maximize the satisfaction of the least satisfied agent, where the satisfaction of an agent is defined as his relative utility, i.e., the ratio between his utility for the given solution and his maximum possible utility. This criterion captures a classical notion of fairness since it focuses on the agent with lowest relative utility. We study worst-case bounds on this ratio: for which ratio a feasible solution is guaranteed to exist, i.e., to what extend can we find a solution that satisfies all agents? How can we build these solutions in polynomial time? For several optimization problems, we give polynomial-time deterministic algorithms which (almost always) achieve the best possible ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marsh M. T., Schilling D. (1994) Equity measurement in facility location analysis: A review and framework. European Journal of Operational Research 74(1): 1–17

    Article  MATH  Google Scholar 

  2. Lipton R. J., Markakis E., Mossel E., Saberi A. (2004). On approximately fair allocations of indivisible goods. In j. S. Breese, J. Feigenbaum, and M. I. Seltzer (Eds), ACM Conference on Electronic Commerce, ACM (pp. 125–131).

  3. Kumar A., Kleinberg J. M. (2006) Fairness measures for resource allocation. SIAM Journal on Computing 36(3): 657–680

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertsimas D., Farias V. F., Trichakis N. (2011) The price of fairness. Operations Research 59(1): 17–31

    Article  MathSciNet  MATH  Google Scholar 

  5. Nash J. (1950) The bargaining problem. Econometrica 18: 155–162

    Article  MathSciNet  MATH  Google Scholar 

  6. Kalai E., Smorodinsky M. (1975) Other solutions to Nash’s bargaining problem. Econometrica 43: 513–518

    Article  MathSciNet  MATH  Google Scholar 

  7. Caragiannis I., Kaklamanis C., Kanellopoulos P., Kyropoulou M. (2009) The efficiency of fair division. In: Leonardi S. (Ed.), WINE. Volume 5929 of Lecture Notes in Computer Science. Springer, Berlin, pp 475–482

    Google Scholar 

  8. Aumann Y., Dombb Y. (2010) The efficiency of fair division with connected pieces. In: Saberi A. (Ed.), WINE. Volume 6484 of Lecture Notes in Computer Science. Springer, Berlin, pp 26–37

    Google Scholar 

  9. Goel A., Meyerson A. (2006) Simultaneous optimization via approximate majorization for concave profits or convex costs. Algorithmica 44(4): 301–323

    Article  MathSciNet  MATH  Google Scholar 

  10. Garey M., Johnson D.S. (1979) Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman, San Francisco

    MATH  Google Scholar 

  11. Lang J. (2004) Logical preference representation and combinatorial vote. Annals of Mathematics and Artificial Intelligence 42(1-3): 37–71

    Article  MathSciNet  MATH  Google Scholar 

  12. Bouveret S., Lang J. (2008) Efficiency and envy-freeness in fair division of indivisible goods: Logical representation and complexity. Journal of Artificial Intelligence Research 32: 525–564

    MathSciNet  MATH  Google Scholar 

  13. Darmann A., Klamler C., Pferschy U. (2009) Maximizing the minimum voter satisfaction on spanning trees. Mathematical Social Sciences 58(2): 238–250

    Article  MathSciNet  MATH  Google Scholar 

  14. Darmann A., Klamler C., Pferschy U. (2010) A note on maximizing the minimum voter satisfaction on spanning trees. Mathematical Social Sciences 60(1): 82–85

    Article  MathSciNet  MATH  Google Scholar 

  15. Dahl G. (1998) The 2-hop spanning tree problem. Operations Research Letters 23(1-2): 21–26

    Article  MathSciNet  MATH  Google Scholar 

  16. Alfandari L., Paschos V. (1994) Approximating minimum spanning tree of depth 2. International Transactions in Operations Research 6: 607–622

    Article  MathSciNet  Google Scholar 

  17. Althaus E., Funke S., Har-Peled S., Könemann J., Ramos E. A., Skutella M. (2005) Approximating k-hop minimum-spanning trees. Operations Research Letters, 33(2): 115–120

    Article  MathSciNet  MATH  Google Scholar 

  18. Kortsarz G., Peleg D. (1999) Approximating the weight of shallow steiner trees. Discrete Applied Mathematics 93(2-3): 265–285

    Article  MathSciNet  MATH  Google Scholar 

  19. Monnot J. (2001) The maximum f-depth spanning tree problem. Information Processing Letters 80(4): 179–187

    Article  MathSciNet  MATH  Google Scholar 

  20. Hassin R., Levin A. (2003) Minimum spanning tree with hop restrictions. Journal of Algorithms 48(1): 220–238

    Article  MathSciNet  MATH  Google Scholar 

  21. Hill T. P. (1987) Partitioning general probability measures. The Annals of Probability 15(2): 804–813

    Article  MathSciNet  MATH  Google Scholar 

  22. Ehrgott M. (2010) Multicriteria optimization. Springer-Verlag, Berlin

    Google Scholar 

  23. Angel E., Bampis E., Gourvès L. (2008) Approximating the pareto curve with local search for the bicriteria tsp(1, 2) problem. Theoretical Computer Science 310(1-3): 135–146

    Article  Google Scholar 

  24. Manthey B., Ram L. S. (2009) Approximation algorithms for multi-criteria traveling salesman problems. Algorithmica 53(1): 69–88

    Article  MathSciNet  MATH  Google Scholar 

  25. Manthey B. (2009). On approximating multi-criteria tsp. In S. Albers, J. Y. Marion (Eds.), STACS. Volume 3 of LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. (pp.637–648), Germany.

  26. Glaßer C., Reitwießner C., Witek M. (2010). Balanced combinations of solutions in multi-objective optimization. CoRR abs/1007.5475.

  27. Angel E., Bampis E., Kononov A. (2003) On the approximate tradeoff for bicriteria batching and parallel machine scheduling problems. Theoretical Computer Science 306(1-3): 319–338

    Article  MathSciNet  MATH  Google Scholar 

  28. Dongarra J., Jeannot E., Saule E., Shi Z. (2007). Bi-objective scheduling algorithms for optimizing makespan and reliability on heterogeneous systems. In P. B. Gibbons, C. Scheideler (Eds.), SPAA, ACM (pp. 280–288).

  29. Ravi R., Goemans M. X. (1996). The constrained minimum spanning tree problem (extended abstract). In R. G. Karlsson, A. Lingas (Eds.), SWAT. Volume 1097 of Lecture Notes in Computer Science (pp. 66–75). Springer.

  30. Papadimitriou, C. H., Yannakakis, M. (2000). On the approximability of trade-offs and optimal access of web sources. In: FOCS. (pp. 86–92).

  31. Hong S. P., Chung S. J., Park B. H. (2004) A fully polynomial bicriteria approximation scheme for the constrained spanning tree problem. Operations Research Letters 32(3): 233–239

    Article  MathSciNet  MATH  Google Scholar 

  32. Stein C., Wein J. (1997) On the existence of schedules that are near-optimal for both makespan and total weighted completion time. Operations Research Letters 21(3): 115–122

    Article  MathSciNet  MATH  Google Scholar 

  33. Angel E., Bampis E., Gourvès L. (2006) Approximation algorithms for the bi-criteria weighted max-cut problem. Discrete Applied Mathematics 154(12): 1685–1692

    Article  MathSciNet  MATH  Google Scholar 

  34. Kouvelis P., Yu G. (1997) Robust discrete optimization and its applications. : Kluwer Academic Publishers,

  35. Yu G. (1998) Min–max optimization of several classical discrete optimization problems. Journal of Optimization Theory and Applications 98(1): 221–242

    Article  MathSciNet  MATH  Google Scholar 

  36. Kasperski A., Zielinski P. (2011) On the approximability of robust spanning tree problems. Theoretical Computer Science 412(4-5): 365–374

    Article  MathSciNet  MATH  Google Scholar 

  37. Aissi H., Bazgan C., Vanderpooten D. (2009) Min–max and min–max regret versions of combinatorial optimization problems: A survey. European Journal of Operational Research 197(2): 427–438

    Article  MathSciNet  MATH  Google Scholar 

  38. Papadimitriou C. H., Steiglitz K. (2000) Combinatorial optimization: Algorithms and complexity. Dover Publications Inc, Mineola

    Google Scholar 

  39. Feige U., Langberg M. (2001) Approximation algorithms for maximization problems arising in graph partitioning. Journal of Algorithms 41(2): 174–211

    Article  MathSciNet  MATH  Google Scholar 

  40. Johnson D. S. (1974) Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences 9(3): 256–278

    Article  MathSciNet  MATH  Google Scholar 

  41. Kruskal J. B. (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society 7(1): 48–50

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Escoffier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escoffier, B., Gourvès, L. & Monnot, J. Fair solutions for some multiagent optimization problems. Auton Agent Multi-Agent Syst 26, 184–201 (2013). https://doi.org/10.1007/s10458-011-9188-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10458-011-9188-z

Keywords

Navigation