Skip to main content
Log in

Learning strategies for task delegation in norm-governed environments

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

How do I choose whom to delegate a task to? This is an important question for an autonomous agent collaborating with others to solve a problem. Were similar proposals accepted from similar agents in similar circumstances? What arguments were most convincing? What are the costs incurred in putting certain arguments forward? Can I exploit domain knowledge to improve the outcome of delegation decisions? In this paper, we present an agent decision-making mechanism where models of other agents are refined through evidence from past dialogues and domain knowledge, and where these models are used to guide future delegation decisions. Our approach combines ontological reasoning, argumentation and machine learning in a novel way, which exploits decision theory for guiding argumentation strategies. Using our approach, intelligent agents can autonomously reason about the restrictions (e.g., policies/norms) that others are operating with, and make informed decisions about whom to delegate a task to. In a set of experiments, we demonstrate the utility of this novel combination of techniques. Our empirical evaluation shows that decision-theory, machine learning and ontology reasoning techniques can significantly improve dialogical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aamodt A., Plaza E. (1994) Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Communications 7: 39–59

    Google Scholar 

  2. Ambrosino, R., & Buchanan, B. (1999). The use of physician domain knowledge to improve the learning of rule-based models for decision-support. In Proceedings of the American Medical Informatics Association symposium, pp. 192–196.

  3. Antoniou G., van Harmelen F. (2008) A semantic web primer, 2nd ed. (Cooperative information systems). MIT, Amsterdam

    Google Scholar 

  4. Breiman L. (1984) Classification and regression trees. Chapman & Hall, Boca Raton, FL

    MATH  Google Scholar 

  5. Duda R., Hart P. (1973) Pattern classification and scene analysis. Wiley, New York

    MATH  Google Scholar 

  6. Emele, C. D., Norman, T. J., Guerin, F., & Parsons, S. (2010). On the benefit of argumentation-derived evidence in learning policies. In Proceedings of the 3rd international workshop on argumentation in multi-agent systems, Toronto, Canada.

  7. Emele, C. D., Norman, T. J., & Parsons, S. (2011). Argumentation strategies for plan resourcing. In P. Yolum, K. Tumer, P. Stone, & L. Sonenberg (Eds.), Proceedings of 10th international conference on autonomous agents and multiagent systems (AAMAS 2011) (pp. 913–920). Taipei, Taiwan.

  8. Fan X., Yen J. (2004) Modeling and simulating human teamwork behaviors using intelligent agents. Physics of Life Reviews 1(3): 173–201

    Article  Google Scholar 

  9. Finger M., Bezerra G. C., Conde D. R. (2010) Resource use pattern analysis for predicting resource availability in opportunistic grids. Concurrency and Computation: Practice and Experience 22(3): 295–313

    Google Scholar 

  10. Frank E., Wang Y., Inglis S., Holmes G., Witten I. H. (1998) Using model trees for classification. Machine Learning 32: 63–76. doi:10.1023/A:1007421302149

    Article  MATH  Google Scholar 

  11. Grosz, B., & Kraus, S. (1993). Collaborative plans for group activities. In Proceedings of the 13th international joint conference on artificial intelligence, pp. 367–373.

  12. W.O.W. Group. (2009). OWL 2 web ontology language: Document overview, October 2009. http://www.w3.org/TR/owl2-overview.

  13. Han J., Kamber M., Pei J. (2006) Data mining: Concepts and techniques. Morgan Kaufmann, San Francisco, CA

    MATH  Google Scholar 

  14. Hirsh H., Noordewier M. (1994) Using background knowledge to improve inductive learning: A case study in molecular biology. IEEE Expert: Intelligent Systems and Their Applications 9: 3–6

    Google Scholar 

  15. Hitzler P., Krötzsch M., Rudolph S. (2009) Foundations of semantic web technologies. Chapman & Hall, Boca Raton, FL

    Google Scholar 

  16. Huynh T., Jennings N. R., Shadbolt N. (2006) An integrated trust and reputation model for open multi-agent systems. Journal of Autonomous Agents and Multi-Agent Systems 13(2): 119–154

    Article  Google Scholar 

  17. Huysmans J., Setiono R., Baesens B., Vanthienen J. (2008) Minerva: Sequential covering for rule extraction. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 38(2): 299–309

    Article  Google Scholar 

  18. Kalles D., Morris T. (1996) Efficient incremental induction of decision trees. Machine Learning 24: 231–242

    Google Scholar 

  19. Kopanas, I., Avouris, N., & Daskalaki, S. (2002). The role of domain knowledge in a large scale data mining project. In I. P. Vlahavas & C. D. Spyropoulos (Eds.), Methods and Applications of Artificial Intelligence (pp. 746–746). Heraklion, Crete, Greece.

  20. McBurney P., Parsons S. (2002) Games that agents play: A formal framework for dialogues between autonomous agents. Journal of Logic, Language and Information 12(2): 315–334

    Article  MathSciNet  Google Scholar 

  21. Mitchell T. M. (1997) Machine learning. McGraw Hill, New York

    MATH  Google Scholar 

  22. Norman T. J., Reed C. (2010) A logic of delegation. Artificial Intelligence 174(1): 51–71

    Article  MathSciNet  MATH  Google Scholar 

  23. Núñez M. (1991) The use of background knowledge in decision tree induction. Machine Learning 6: 231–250

    Google Scholar 

  24. Pearl J. (2000) Causality: Modeling, reasoning, and inference. Cambridge University Press, Cambridge

    Google Scholar 

  25. Quinlan J. (1986) Induction of decision trees. Machine Learning 1(1): 81–106

    Google Scholar 

  26. Quinlan J. R. (1993) C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  27. Rahwan, I., Sonenberg, L., & Dignum, F. (2003). Towards interest-based negotiation. In Proceedings of the 2nd international joint conference on autonomous agents and multi-agent systems, pp. 773–780.

  28. Ramchurn, S. D. (2004). Multi-agent negotiation using trust and persuasion. PhD thesis, ECS, University of Southampton.

  29. Rathod, P., & des Jardins, M. (2004). Stable team formation among self-interested agents. In AAAI workshop on forming and maintaining coalitions in adaptive multiagent systems.

  30. Russell S., Norvig P. (2003) Artificial intelligence: A modern approach. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  31.  Sensoy, M., Norman, T. J., Vasconcelos, W. W., & Sycara, K. (2010). OWL-POLAR: Semantic policies for agent reasoning. In Proceedings of the ninth international semantic web conference, vol. 6414 of Lecture Notes in Computer Science (pp. 679–695). Berlin: Springer.

  32. Sensoy M., Zhang J., Yolum P., Cohen R. (2009) Context-aware service selection under deception. Computational Intelligence 25(4): 335–364

    Article  MathSciNet  Google Scholar 

  33. Sirin E., Parsia B., Grau B. C., Kalyanpur A., Katz Y. (2007) Pellet: A practical OWL-DL reasoner. Journal of Web Semantics 5(2): 51–53

    Article  Google Scholar 

  34. Sukthankar G., Sycara K. (2010) Analyzing team decision-making in tactical scenarios. The Computer Journal 53(5): 503–512

    Article  Google Scholar 

  35. Sycara K., Norman T. J., Giampapa J. A., Kollingbaum M. J., Burnett C., Masato D., McCallum M., Strub M. H. (2010) Agent support for policy-driven collaborative mission planning. The Computer Journal 53(5): 528–540

    Article  Google Scholar 

  36. Teacy W., Patel J., Jennings N., Luck M. (2006) Trust and reputation in the context of inaccurate information sources. Autonomous Agents and Multi-Agent Systems 12(2): 183–198

    Article  Google Scholar 

  37. Witten I. H., Frank E. (2005) Data Mining: Practical machine learning tools and techniques . Morgan Kaufmann, San Francisco, CA

    MATH  Google Scholar 

  38. Zhang, J., & Honavar V. (2003). Learning decision tree classifiers from attribute value taxonomies and partially specified data. In Proceedings of the international conference on machine learning.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chukwuemeka David Emele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emele, C.D., Norman, T.J., Şensoy, M. et al. Learning strategies for task delegation in norm-governed environments. Auton Agent Multi-Agent Syst 25, 499–525 (2012). https://doi.org/10.1007/s10458-012-9194-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10458-012-9194-9

Keywords

Navigation