Skip to main content
Log in

A Bayesian optimal social law synthesizing mechanism for strategical agents

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

One of the effective and well studied approaches for coordinating multiagent systems is to synthesize social laws which restrict the behavior of individual agents. We show that when rational behavior of the agents and private information are considered, the optimal social law synthesizing problem naturally evolves into a setting which can be handled by the framework of algorithmic mechanism design. We focus on the Bayesian case in this paper, that is, the probability distribution of each agent’s private cost is known by the public. In this case, our problem closely relates to path/spanning-tree auctions and Myerson’s optimal auction mechanism, but the optimization objective is new, that is, we focus on profit maximization instead of payment maximization in a reverse auction, and as far as we know in this setting no existing mechanism can be directly applied. By studying this problem: We further extend the logic-based framework of social law optimization problem to the strategic case, and show that it becomes a new problem of algorithmic mechanism design; We find out a mechanism that is incentive compatible, individually rational and maximize the expected profit for all input cost profiles; However, we can show that this mechanism is computational intractable (FP\(^{NP}\)-complete); So, we try to specify Computation Tree Logic semantics as a set of linear-integer constraints, design a Integer-Linear Programming based algorithm for computing the proposed mechanism, enabling it to be handled by current ILP solvers, and finally find out a tractable 2-approximation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We define truthfulness, individually rationality respectively in Definitions 8 and 10.

  2. We define approximation mechanism in Definition 11.

  3. For any social law \(\eta\) which forbids \((s_0,s_1)\), or \((s_1,s_2)\) or both, we have \(K\dag \eta ,s_0\nvDash \varphi _i\) for at least one \(i\in \{1,2,3\}\); Now we consider the social law \(\eta '\) obtained from \(\eta\) by adding all the missing transitions in \(\{(s_0,s_1),(s_1,s_2)\}\), we have \(S\dag \eta ',s_0\vDash \varphi _i\) for all \(i\in \{1,2,3,4,6,9\}\), therefore replacing \(\eta '\) with \(\eta\), the profit gains at least \(30 - (10+5+6) = 9\), since at least 1 formula in \(\{\varphi _1,\varphi _2,\varphi _3\}\) become true and at most all formulas in \(\{\varphi _5,\varphi _7,\varphi _8\}\) become false.

References

  1. Shoham, Y., & Tennenholtz, M. (1992). On the synthesis of useful social laws for artificial agent societies. In Proceedings of AAAI-92 (pp. 276–281).

  2. Shoham, Y., & Tennenholtz, M. (1996). On social laws for artificial agent societies: Off-line design. In Agre, P.E., & Rosenschein S.J. (Eds.), Computational theories of interaction and agency (pp. 597–618). MIT Press.

  3. van der Hoek, W., Roberts, M., & Wooldridge, M. (2007). Social laws in alternating time: Effectiveness feasibility, and synthesis. Synthese, 156, 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  4. Wu, J., Wang, C., & Xie, J. (2011). A framework for coalitional normative systems. In Proceedings of AAMAS-11.

  5. Ågotnes, T., van der Hoek, W., & Wooldridge, M. (2012). Conservative social laws. In Proceedings of ECAI-12 (pp. 49–53).

  6. Ågotnes, T., Wooldridge, M., van der Hoek, W. (2007). Normative system games. In Proceedings of AAMAS-07 (pp. 876–883).

  7. Morales, J., Lopez-Sanchez, M., Wooldridge, M., & Vasconcelos, W. (2013). Automated synthesis of normative systems. In Proceedings of AAMAS-13 (pp. 484–490).

  8. Bulling, N., & Dastani, M. (2011). Verifying normative behaviour via normative mechanism design. In Proceedings of IJCAI-2011 (pp. 103–108).

  9. Ågotnes, T., & Wooldridge, M. (2010). Optimal social laws. In Proceedings of AAMAS-10 (pp. 667–674).

  10. Nisan, N., & Ronen, A. (1999). Algorithmic mechanism design. In Proceedings of the thirty-first annual ACM symposium on theory of computing (pp. 129–140). ACM.

  11. Nisan, N., & Ronen, A. (2001). Algorithmic mechanism design. Games and Economic Behavior, 35, 129–140.

    Article  MathSciNet  MATH  Google Scholar 

  12. Nisan, N., Roughgarden, T., Tardos, E., & Vazirani, V. V. (2007). Algorithmic Game Theory (Vol. 1). Cambridge University Press.

    Book  MATH  Google Scholar 

  13. Archer, A., & Tardos, E. (2002). Frugal path mechanisms. In Proceedings of SODA-02 (pp. 991–999).

  14. Talwar, K. (2003). The price of truth: Frugality in truthful mechanisms. In Proceedings of STACS-03 (pp. 608–619).

  15. Archer, A., & Tardos, E. (2004). Frugal path mechanisms. ACM Transactions on Algorithms, 3(1), 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  16. Elkind, E., Sahai, A., & Steiglitz, K. (2004). Frugality in path auctions. In Proceedings of SODA-04 (pp. 701–709).

  17. Karlin, A.R., & Kempe, D. (2005). Beyond vcg: Frugality of truthful mechanisms. In Proceedings of FOCS-05 (pp. 615–626).

  18. Zhao, D., Ma, H., & Liu, L. (2014). Frugal online incentive mechanisms for crowdsourcing tasks truthfully. CoRR arXiv:1404.2399.

  19. Calinescu, G. (2015). Bounding the payment of approximate truthful mechanisms. Theoretical Computer Science, 562, 419–435.

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, L., Chen, H., Wu, J., Wang, C., & Xie, J. (2016). False-name-proof mechanisms for path auctions in social networks. In Proceedings of ECAI-16 (pp. 1485–1492).

  21. Bikhchandani, S., Vries, S., Schummer, J., & Vohra, R.V. (2002) Linear programming and vickrey auctions. In Vohra (Ed.), Mathematics of the internet: E-auction and markets.

  22. Garg, R., Kumar, V., Rudra, A., & Verma, A. (2002). Coalitional games on graphs: Core structure, substitutes and frugality. Technical Report TR-02-60, UTCS.

  23. Myerson, R. B. (1981). Optimal auction design. Mathematics of Operations Research, 6(1), 58–73.

    Article  MathSciNet  MATH  Google Scholar 

  24. Emerson, E.A. (1990). Temporal and modal logic. In Leeuwen, J.V. (Ed.), Handbook of theoretical computer science (pp. 997–1072).

  25. Leyton-Brown, K., & Shoham, Y. (2008). Essentials of game theory: A concise multidisciplinary introduction. In Synthesis lectures on artificial intelligence & machine learning (pp. 77–78). Morgan & Claypool Publishers.

  26. Singer, Y. (2010). Budget feasible mechanisms. In Proceedings of FOCS-10 (pp. 765–774).

  27. Baier, C., & Katoen, J. P. (2008). Principles of Model Checking (pp. 330–333). The MIT Press.

    MATH  Google Scholar 

  28. Ågotnes, T., van der Hoek, W., Rodriguez-Aguilar, J. A., Sierra, C., & Wooldridge, M. (2007). On the logic of normative systems. In Proceedings of IJCAI-07 (pp. 1175–1180).

  29. Ågotnes, T., van der Hoek, W., & Wooldridge, M. (2008). Robust normative systems. In Proceedings of AAMAS-08 (pp. 747–754).

  30. Ågotnes, T., van der Hoek, W., Tennenholtz, M., & Wooldridge, M. (2009). Power in normative systems. In Proceedings of AAMAS-09 (pp. 145–152).

  31. van der Hoek, W., Roberts, M., & Wooldridge, M. (2005). Knowledge and social laws. In Proceedings of the AAMAS-05, Utrecht, Netherlands (pp. 674–681).

  32. Wang, C., Wu, J., Wang, Z., & Xie, J. (2011). Strategic ability updating in concurrent games by coalitional commitment. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41(6), 1442–1457.

    Article  Google Scholar 

  33. Binmore, K. (1994). Game theory and the social contract, Vol. 1: Playing fair. The MIT Press.

    Google Scholar 

  34. Binmore, K. (1998). Game theory and the social contract, Vol. 2: Just playing. The MIT Press.

    Google Scholar 

  35. Bulling, N., & Dastani, M. (2016). Norm-based mechanism design. Artificial Intelligence, 239, 97–142.

    Article  MathSciNet  MATH  Google Scholar 

  36. Dell’Anna, D., Dastani, M., & Dalpiaz, F. (2017). Reasoning about norms revision. In Proceedings of BNAIC-17 (pp. 281–290).

  37. Sandholm, T. (2002). Algorithm for optimal winner determination in combinatorial auctions. Artificial Intelligence, 135(1–2), 1–54.

    Article  MathSciNet  MATH  Google Scholar 

  38. Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders. Journal of Finance, 16(1), 8–37.

    Article  MathSciNet  Google Scholar 

  39. Clarke, E. H. (1971). Multipart pricing of public goods. Public Choice, 11(11), 17–33.

    Article  Google Scholar 

  40. Groves, T. (1973). Incentives in teams. Econometrica, 41, 617–631.

    Article  MathSciNet  MATH  Google Scholar 

  41. Nisan, N., & Ronen, A. (2003). Computationally feasible VCG mechanisms. Journal of Artificial Intelligence Research, 29, 19–47.

    Article  MathSciNet  MATH  Google Scholar 

  42. Dobzinski, S., & Nisan, N. (2007). Limitations of VCG-based mechanisms. In Proceedings of STOC-07 (pp. 338–344).

  43. Hartline, J. (2006). Lectures on optimal mechanism design.

  44. Wu, J., Qiao, Y., Zhang, L., Wang, C., & Liu, M. (2020). A multi-unit profit competitive mechanism for cellular traffic offloading. In Proceedings of AAAI-2020 (pp. 2294–2301).

  45. Wu, J., Zhang, L., Wang, C., & Xie, J. (2017). Synthesizing optimal social laws for strategical agents via Bayesian mechanism design. In Proceedings of AAMAS-17 (pp. 1214–1222).

  46. Wu, J., Zhang, Y., Qiao, Y., Zhang, L., Wang, C., & Xie, J. (2019). Multi-unit budget feasible mechanisms for cellular traffic offloading. In Proceedings of AAMAS-19.

  47. Goldberg, A. V., Hartline, J. D., & Wright, A. (2001). Competitive auctions and digital goods. In Proceedings of SODA-01 (pp. 735–744).

  48. Goldberg, A. V., Hartline, J. D., Karlin, A. R., Saks, M., & Wright, A. (2006). Competitive auctions. Games and Economic Behavior, 55(2), 242–269.

    Article  MathSciNet  MATH  Google Scholar 

  49. Chen, N., Gravin, N., & Lu, P. (2014). Optimal competitive auctions. In Proceedings of STOC-14 (pp. 253–262).

  50. Cary, M. C., Flaxman, A. D., Hartline, J. D., & Karlin, A. R. (2008). Auctions for structured procurement. In Proceedings of SODA-08 (pp. 304–313).

  51. Alur, R., Henzinger, T.A., & Kupferman, O. (1997). Alternating-time temporal logic. In Proceedings of FOCS-97 (pp. 100–109).

  52. Alur, R., Henzinger, T. A., & Kupferman, O. (2002). Alternating-time temporal logic. JACM, 49(5), 672–713.

    Article  MathSciNet  MATH  Google Scholar 

  53. Wu, J., Zhang, L., Wang, C., & Xie, J. (2017). Mechanism design for social law synthesis under incomplete information, pp. 1757–1759.

  54. Bhattacharya, S., Koutsoupias, E., Kulkarni, J., Leonardi, S., & Xu, X. (2020). Prior-free multi-unit auctions with ordered bidders. Theoretical Computer Science, 846(8), 160–171.

    Article  MathSciNet  MATH  Google Scholar 

  55. Ying, C., Huang, H., Ajay, G., & Li, Z. (2017). A prior-free spectrum auction for approximate revenue maximization. Computer Journal, 6, 898–910.

    Article  MathSciNet  Google Scholar 

  56. Liu, D., Hafid, A. S., & Khoukhi, L. (2019). Multi-item auction based mechanism for mobile data offloading: A robust optimization approach. IEEE Transactions on Vehicular Technology, 69(4).

  57. Guo, M., Wang, G., Hata, H., & Babar, M. A. (2021). Revenue maximizing markets for zero-day exploits. Autonomous Agents and Multi-Agent Systems, 35(2), 1–29.

    Article  MATH  Google Scholar 

  58. Cai, Y., & Daskalakis, C. (2017). Learning multi-item auctions with (or without) samples. In Proceedings of FOCS-08 (pp. 234–254).

  59. Bx, A., & Wei, Y. A. (2020). A Bayesian learning model for estimating unknown demand parameter in revenue management-sciencedirect. European Journal of Operational Research.

  60. Dütting, P., Feng, Z., Narasimhan, H., & Parkes, D. C. (2017). Optimal auctions through deep learning. arXiv preprint arXiv:1706.03459.

  61. Balcan, M.-F. F., Sandholm, T., & Vitercik, E. (2016). Sample complexity of automated mechanism design. In Proceedings of advances in neural information processing systems (pp. 79–98).

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their hard work and insightful suggestions. The paper is partly funded by NSFC (91646204, 92046026, 61876080, 71871109, 71901115, 61973151); and National Key Research and Development Program of China (2017YFD0401001, 2018YFB1403400), Key Research and Development Program of Jiangsu Province (BE2019105, BE2021001-4), Natural Science Foundation of Jiangsu Province (BK20191406), Young Scholar Programme from NUFE (SHLXW19001), and International Cooperation Programme of JiangSu Province (BZ2020008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongjun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix A: Proof of Lemma 1

Proof

First of all, the following equivalence relations follow trivially from the definition of bnic and Eqs. (16) and (17):

The mechanism \(\langle H,P\rangle\) is bnic

  • iff \(\forall i\in A, \xi _i, \gamma _i\in \Xi _i:\bar{u}_i(\xi _i,\xi _i)\ge \bar{u}_i(\xi _i,\gamma _i)\)

  • iff \(\forall i\in A, \xi _i, \gamma _i\in \Xi _i: \hat{u}_i(\xi _i)\ge p_i(\gamma _i) - h_i(\gamma _i)\xi _i\)

  • iff \(\forall i\in A, \xi _i, \gamma _i\in \Xi _i:\hat{u}_i(\xi _i)-\hat{u}_i(\gamma _i)\ge h_i(\gamma _i)(\gamma _i-\xi _i)\).

Now, we are ready to prove Lemma 1:

\(\Rightarrow\)”: According to the above equivalence relation, for all i, \(\xi _i\) and \(\gamma _i\), we have both \(\hat{u}_i(\xi _i)-\hat{u}_i(\gamma _i)\ge h_i(\gamma _i)(\gamma _i-\xi _i)\) and \(\hat{u}_i(\gamma _i)-\hat{u}_i(\xi _i)\ge h_i(\xi _i)(\xi _i-\gamma _i)\). So we can further obtain

$$\begin{aligned} h_i(\xi _i)(\xi _i-\gamma _i)\le \hat{u}_i(\gamma _i)-\hat{u}_i(\xi _i)\le h_i(\gamma _i)(\xi _i-\gamma _i) \end{aligned}$$
(A1)

It follows that \(h_i(\xi _i)\le h_i(\gamma _i)\) iff \(\xi _i\ge \gamma _i\). Therefore, \(h_i(\xi _i)\) is a monotone nonincreasing function.

To show the correctness of Eq. (21), we firstly divide the interval \([0,\xi _i]\) into L intervals of length \(\delta = \frac{\xi _i}{L}\). Denote by \(y^k = (k+1)\delta\) the rightmost end of the kth interval, and by \(x^k = k\delta\) its leftmost end. Let \(\xi _i = y^k\) and \(\gamma _i = x^k\), then

$$\begin{aligned} \sum _{k=0}^{L-1} h_i(y^k)(y^k-x^k)\le \sum _{k=0}^{L-1} \hat{u}_i(x^k)-\hat{u}_i(y^k)\le \sum _{k=0}^{L-1} h_i(x^k)(y^k-x^k) \end{aligned}$$
(A2)

Noticing that, \(y^k = x^{k+1}\) for all \(0\le k\le L-1\), therefore

$$\begin{aligned} \sum _{k=0}^{L-1} \hat{u}_i(x^k)-\hat{u}_i(y^k) = \hat{u}_i(0) - \hat{u}_i(\xi _i) \end{aligned}$$
(A3)

Both the left part and right part of inequality (A2) are Rieman sums. By increasing L, \(\delta\) gradually approaches 0, both of the left part and right part of inequality (A2) converge to \(\int _{0}^{\xi _i} h_i(t_i) dt_i\). Therefore,

$$\begin{aligned} \hat{u}_i(0) - \hat{u}_i(\xi _i) = \int _{0}^{\xi _i} h_i(t_i)dt_i \end{aligned}$$
(A4)

Moreover, Eq. (17) follows

$$\begin{aligned} \hat{u}_i(0) = p_i(0) \end{aligned}$$
(A5)

Finally, the equation in item (2) of this lemma follows by combining the Eqs. (17), (A4) and (A5).

\(\Leftarrow\)”: Equation (22) follows, for all \(\gamma _i\in \Xi _i\)

$$\begin{aligned} \hat{u}_i(\xi _i) - \hat{u}_i(\gamma _i) = \int _{0}^{\gamma _i}h_i(t_i)dt_i-\int _{0}^{\xi _i}h_i(t_i)dt_i= \int _{\xi _i}^{\gamma _i}h_i(t_i)dt_i \end{aligned}$$
(A6)

Since \(h_i\) is monotone nonincreasing,

$$\begin{aligned} \int _{\xi _i}^{\gamma _i}h_i(t_i)dt_i\ge (\gamma _i-\xi _i)h_i(\gamma _i) \end{aligned}$$
(A7)

then we have \(\hat{u}_i(\xi _i) - \hat{u}_i(\gamma _i) \ge (\gamma _i-\xi _i)h_i(\gamma _i)\).

Therefore, by the equivalence relation established in the beginning of this proof, \(\langle H,P\rangle\) is bnic. \(\square\)

Appendix B: Proof of Lemma 13

Proof

  1. (1)

    \(x^s_{p} = 1\) iff \(K\dag \eta ,s \models p\) iff \(p\in \pi (x)\);

  2. (2)

    \(x^s_{\lnot \psi } = 1\) iff \(K\dag \eta ,s \models \lnot \psi\) iff \(K\dag \eta ,s \models \psi\) doesn’t hold iff \(x^s_{\psi } = 0\);

  3. (3)

    \(x^s_{\psi \vee \chi } = 1\) iff \(K\dag \eta ,s \models \psi \vee \chi\) iff \(K\dag \eta ,s \models \psi\) or \(K\dag \eta ,s \models \chi\) iff \(x^s_{\psi } = 1\) or \(x^s_{\chi } = 1\);

  4. (4)

    \(x^s_{\mathsf {E}\bigcirc \psi } = 1\) iff \(K\dag \eta , s \models \mathsf {E}\bigcirc \psi\) iff \(\exists s'\in \mathcal {N}(s): (s,s')\notin \eta\) and \(K\dag \eta , s' \models \psi\) iff \(\exists s'\in \mathcal {N}(s):\) \(y^s_{s'} = 0\) and \(x^{s'}_{\psi } = 1\);

  5. (5)

    \(x^s_{\mathsf {E}(\psi \mathcal {U}\chi )} = 1\) iff \(K\dag \eta , s \models \mathsf {E}(\psi \mathcal {U}\chi )\) iff \(K\dag \eta , s \models \mathsf {E}(\psi \mathcal {U}\chi )\) iff \(K\dag \eta , s \models \chi \vee (\psi \wedge \mathsf {E}\bigcirc \mathsf {E}(\psi \mathcal {U}\chi )))\) (by Proposition 12.1) iff \(K\dag \eta , s \models \chi\) or \(K\dag \eta , s \models \psi \wedge \mathsf {E}\bigcirc \mathsf {E}(\psi \mathcal {U}\chi )\) iff \(K\dag \eta , s \models \chi\) or (\(K\dag \eta , s \models \psi\) and \(K\dag \eta , s \models \mathsf {E}\bigcirc \mathsf {E}(\psi \mathcal {U}\chi )\)) iff \(x^s_{\chi } = 1\) or (\(x^s_{\psi } = 1\) and \(x^{s}_{\mathsf {E}\bigcirc \mathsf {E}(\psi \mathcal {U}\chi )}=1\));

  6. (6)

    \(x^s_{\mathsf {E}\Box \varphi } = 1\) iff \(K\dag \eta , s \models \mathsf {E}\Box \varphi\) iff \(K\dag \eta , s \models \varphi \wedge \mathsf {E}\bigcirc \mathsf {E}\Box \varphi\) (by Proposition 12.2) iff \(K\dag \eta , s \models \varphi\) and \(K\dag \eta , s \models \mathsf {E}\bigcirc \mathsf {E}\Box \varphi\) iff \(x^s_{\varphi } = 1\) and \(x^{s}_{\mathsf {E}\bigcirc \mathsf {E}\Box \varphi } = 1\);

  7. (7)

    \(x^s_{\mathsf {A}\bigcirc \psi } = 1\) iff \(K\dag \eta , s \models \mathsf {A}\bigcirc \psi\) iff \(\forall s'\in \mathcal {N}(s): (s,s')\in \eta\) or \(K\dag \eta , s' \models \psi\) iff \(\forall s'\in \mathcal {N}(s):\) \(y^s_{s'} = 1\) or \(x^{s'}_{\psi } = 1\);

  8. (8)

    \(x^s_{\mathsf {A}(\psi \mathcal {U}\chi )} = 1\) iff \(K\dag \eta , s \models \mathsf {A}(\psi \mathcal {U}\chi )\) iff \(K\dag \eta , s \models \mathsf {A}(\psi \mathcal {U}\chi )\) iff \(K\dag \eta , s \models \chi \vee (\psi \wedge \mathsf {A}\bigcirc \mathsf {A}(\psi \mathcal {U}\chi )))\) (by Proposition 12.3) iff \(K\dag \eta , s \models \chi\) or \(K\dag \eta , s \models \psi \wedge \mathsf {E}\bigcirc \mathsf {E}(\psi \mathcal {U}\chi )\) iff \(K\dag \eta , s \models \chi\) or (\(K\dag \eta , s \models \psi\) and \(K\dag \eta , s \models \mathsf {A}\bigcirc \mathsf {A}(\psi \mathcal {U}\chi )\)) iff \(x^s_{\chi } = 1\) or (\(x^s_{\psi } = 1\) and \(x^{s}_{\mathsf {A}\bigcirc \mathsf {A}(\psi \mathcal {U}\chi )}=1\));

  9. (9)

    \(x^s_{\mathsf {A}\Box \varphi } = 1\) iff \(K\dag \eta , s \models \mathsf {A}\Box \varphi\) iff \(K\dag \eta , s \models \varphi \wedge \mathsf {A}\bigcirc \mathsf {A}\Box \varphi\) (by Proposition 12.4) iff \(K\dag \eta , s \models \varphi\) and \(K\dag \eta , s \models \mathsf {E}\bigcirc \mathsf {A}\Box \varphi\) iff \(x^s_{\varphi } = 1\) and \(x^{s}_{\mathsf {A}\bigcirc \mathsf {A}\Box \varphi } = 1\);

  10. (10)

    \(x^s_{\mathsf {E}\Diamond \varphi } = 1\) iff \(K\dag \eta , s \models \mathsf {E}\Diamond \varphi\) iff \(K\dag \eta , s \models \varphi \vee \mathsf {E}\bigcirc \mathsf {E}\Diamond \varphi\) (by Proposition 12.5) iff \(K\dag \eta , s \models \varphi\) or \(K\dag \eta , s \models \mathsf {E}\bigcirc \mathsf {E}\Diamond \varphi\) iff \(x^s_{\varphi } = 1\) or \(x^{s}_{\mathsf {E}\bigcirc \mathsf {E}\Diamond \varphi } = 1\);

  11. (11)

    \(x^s_{\mathsf {A}\Diamond \varphi } = 1\) iff \(K\dag \eta , s \models \mathsf {A}\Diamond \varphi\) iff \(K\dag \eta , s \models \varphi \vee \mathsf {A}\bigcirc \mathsf {A}\Diamond \varphi\) (by Proposition 12.6) iff \(K\dag \eta , s \models \varphi\) or \(K\dag \eta , s \models \mathsf {A}\bigcirc \mathsf {A}\Diamond \varphi\) iff \(x^s_{\varphi } = 1\) or \(x^{s}_{\mathsf {A}\bigcirc \mathsf {A}\Diamond \varphi } = 1\). \(\square\)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Cao, J., Sun, H. et al. A Bayesian optimal social law synthesizing mechanism for strategical agents. Auton Agent Multi-Agent Syst 36, 48 (2022). https://doi.org/10.1007/s10458-022-09576-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10458-022-09576-4

Keywords

Navigation