Skip to main content
Log in

Marketing campaign targeting using bridge extraction in multiplex social network

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

In this paper, we introduce a methodology for improving the targeting of marketing campaigns using bridge prediction in communities based on the information of multilayer online social networks. The campaign strategy involves the identification of nodes with high brand loyalty and top-ranking nodes in terms of participation in bridges that will be involved in the evolution of the graph. Our approach is based on an efficient classification model combining topological characteristics of crawled social graphs with sentiment and linguistic traits of user-nodes, popularity in social media as well as meta path-based features of multilayer networks. To validate our approach we present a set of experimental results using a well-defined dataset from Twitter and Foursquare. Our methodology is useful to recommendation systems as well as to marketers who are interested to use social influence and run effective marketing campaigns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. https://foursquare.com/.

  2. http://www.tweepy.org.

  3. https://pypi.python.org/pypi/pyfoursquare.

  4. https://networkx.github.io.

  5. https://textblob.readthedocs.io.

  6. https://bitbucket.org/taynaud/python-louvain.

  7. http://scikit-learn.org.

  8. https://pypi.python.org/pypi/xgboost.

References

  • Al Hasan M, Chaoji V, Salem S, Zaki M (2006) Link prediction using supervised learning. In: SDM06: workshop on link analysis, counter-terrorism and security

  • Anger I, Kittl C (2011) Measuring influence on twitter. In: Proceedings of the 11th international conference on knowledge management and knowledge technologies. ACM, p 31

  • Backstrom L, Leskovec J (2011) Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the fourth ACM international conference on web search and data mining. ACM, pp 635–644

  • Bakshy E, Hofman JM, Mason WA, Watts DJ (2011) Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the fourth ACM international conference on web search and data mining. ACM, pp 65–74

  • Bakshy E, Karrer B, Adamic LA (2009) Social influence and the diffusion of user-created content. In: Proceedings of the 10th ACM conference on electronic commerce. ACM, pp 325–334

  • Benevenuto F, Magno G, Rodrigues T, Almeida V (2010) Detecting spammers on twitter. CEAS 6:12

    Google Scholar 

  • Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):P10008

    Article  Google Scholar 

  • Bródka P, Kazienko P, Musiał K, Skibicki K (2012) Analysis of neighbourhoods in multi-layered dynamic social networks. Int J Comput Intell Syst 5(3):582–596

    Article  Google Scholar 

  • Cardillo A, Zanin M, Gómez-Gardenes J, Romance M, del Amo AJG, Boccaletti S (2013) Modeling the multi-layer nature of the european air transport network: resilience and passengers re-scheduling under random failures. Eur Phys J Spec Top 215(1):23–33

    Article  Google Scholar 

  • Cha M, Haddadi H, Benevenuto F, Gummadi PK (2010) Measuring user influence in twitter: the million follower fallacy. ICWSM 10(10–17):30

    Google Scholar 

  • Chu Z, Gianvecchio S, Wang H, Jajodia S (2012) Detecting automation of twitter accounts: Are you a human, bot, or cyborg? IEEE Trans Depend Secur Comput 9(6):811–824

    Article  Google Scholar 

  • Cossu J-V, Dugué N, Labatut V (2015) Detecting real-world influence through twitter. In: 2015 Second European network intelligence conference (ENIC). IEEE, pp 83–90

  • Cravens DW, Piercy N (2006) Strategic marketing, vol 7. McGraw-Hill, New York

    Google Scholar 

  • Davis CA, Varol O, Ferrara E, Flammini A, Menczer F (2016) Botornot: a system to evaluate social bots. In: Proceedings of the 25th international conference companion on world wide web, WWW ’16 Companion. International World Wide Web Conferences Steering Committee, pp 273–274

  • Dong Y, Tang J, Wu S, Tian J, Chawla NV, Rao J, Cao H (2012) Link prediction and recommendation across heterogeneous social networks. In: 2012 IEEE 12th international conference on data mining (ICDM). IEEE, pp 181–190

  • Doyle P (2009) Value-based marketing: marketing strategies for corporate growth and shareholder value. Wiley, London

    Google Scholar 

  • Ferrara E, Varol O, Davis C, Menczer F, Flammini A (2016) The rise of social bots. Commun ACM 59(7):96–104

    Article  Google Scholar 

  • Fortunato S (2010) Community detection in graphs. Phys Rep 486(3):75–174

    Article  MathSciNet  Google Scholar 

  • Freitas C, Benevenuto F, Ghosh S, Veloso A (2015) Reverse engineering socialbot infiltration strategies in twitter. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015. ACM, pp 25–32

  • Gjoka M, Kurant M, Butts CT, Markopoulou A (2011) Practical recommendations on crawling online social networks. IEEE J Sel Areas Commun 29(9):1872–1892

    Article  Google Scholar 

  • Gurini DF, Gasparetti F, Micarelli A, Sansonetti G (2013) A sentiment-based approach to twitter user recommendation. In: RSWeb@ RecSys

  • Hristova D, Noulas A, Brown C, Musolesi M, Mascolo C (2016) A multilayer approach to multiplexity and link prediction in online geo-social networks. EPJ Data Sci 5(1):24

    Article  Google Scholar 

  • Hristova D, Musolesi M, Mascolo C (2014) Keep your friends close and your facebook friends closer: a multiplex network approach to the analysis of offline and online social ties. In: ICWSM

  • Jalili M, Perc M (2017) Information cascades in complex networks. J Complex Netw 5(5):665–693

    MathSciNet  Google Scholar 

  • Jalili M, Orouskhani Y, Asgari M, Alipourfard N, Perc M (2017) Link prediction in multiplex online social networks. R Soc Open Sci 4(2):160863

    Article  MathSciNet  Google Scholar 

  • Kashima H, Abe N (2006) A parameterized probabilistic model of network evolution for supervised link prediction. In: Sixth international conference on data mining, ICDM’06. IEEE, pp 340–349

  • Kempe, D, Kleinberg JM, Tardos É (2005) Influential nodes in a diffusion model for social networks. In: ICALP, vol 5. Springer, pp 1127–1138

  • Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 137–146

  • Kimura M, Saito K, Nakano R (2007) Extracting influential nodes for information diffusion on a social network. AAAI 7:1371–1376

    Google Scholar 

  • Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2(3):203–271

    Article  Google Scholar 

  • Koch OF, Benlian A (2015) Promotional tactics for online viral marketing campaigns: how scarcity and personalization affect seed stage referrals. J Interact Mark 32:37–52

    Article  Google Scholar 

  • Lee K, Eoff BD, Caverlee J (2011) Seven months with the devils: a long-term study of content polluters on twitter. In: ICWSM

  • Lee K, Ganti RK, Srivatsa M, Liu L (2014) When twitter meets foursquare: tweet location prediction using foursquare. In: Proceedings of the 11th international conference on mobile and ubiquitous systems: computing, networking and services. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), pp 198–207

  • Lee C, Kwak H, Park H, Moon S (2010) Finding influentials based on the temporal order of information adoption in twitter. In: Proceedings of the 19th international conference on World wide web. ACM, pp 1137–1138

  • Leskovec J, Singh A, Kleinberg J (2006) Patterns of influence in a recommendation network. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 380–389

  • Li X, Chen H (2013) Recommendation as link prediction in bipartite graphs: a graph kernel-based machine learning approach. Decis Support Syst 54(2):880–890

    Article  Google Scholar 

  • Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Assoc Inf Sci Technol 58(7):1019–1031

    Article  Google Scholar 

  • Lichtenwalter RN, Lussier JT, Chawla NV (2010) New perspectives and methods in link prediction. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 243–252

  • Liu N, Li L, Xu G, Yang Z (2014) Identifying domain-dependent influential microblog users: a post-feature based approach. In: AAAI, pp 3122–3123

  • Lü L, Zhou T (2011) Link prediction in complex networks: a survey. Phys A Stat Mech Appl 390(6):1150–1170

    Article  Google Scholar 

  • Mei Y, Zhong Y, Yang J (2015) Finding and analyzing principal features for measuring user influence on twitter. In: 2015 IEEE first international conference on big data computing service and applications (BigDataService). IEEE, pp 478–486

  • Menon AK, Elkan C (2011) Link prediction via matrix factorization. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 437–452

  • Messias J, Schmidt L, Oliveira R, Benevenuto F (2013) You followed my bot! transforming robots into influential users in twitter. First Monday 18:7

    Article  Google Scholar 

  • Newman ME (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6):066133

    Article  Google Scholar 

  • Pennebaker JW, Francis ME, Booth RJ (2001) Linguistic inquiry and word count: Liwc 2001. Mahway Lawrence Erlbaum Assoc 71(21):21

    Google Scholar 

  • Porter MA, Onnela J-P, Mucha PJ (2009) Communities in networks. Not AMS 56(9):1082–1097

    MathSciNet  MATH  Google Scholar 

  • Purohit H, Ajmera J, Joshi S, Verma A, Sheth AP (2012) Finding influential authors in brand-page communities. In: ICWSM

  • Rao A, Spasojevic N, Li Z, DSouza T (2015) Klout score: measuring influence across multiple social networks. In: 2015 IEEE international conference on big data (big data). IEEE, pp 2282–2289

  • Romero DM, Tan C, Ugander J (2013) On the interplay between social and topical structure. In: ICWSM

  • Scellato S, Noulas A, Mascolo C (2011) Exploiting place features in link prediction on location-based social networks. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1046–1054

  • Shahriari M, Jalili M (2014) Ranking nodes in signed social networks. Soc Netw Anal Min 4(1):172

    Article  Google Scholar 

  • Shi S, Li Y, Wen Y, Xie W (2015) Adding the sentiment attribute of nodes to improve link prediction in social network. In: 2015 12th international conference on fuzzy systems and knowledge discovery (FSKD). IEEE, pp 1263–1269

  • Stopczynski A, Sekara V, Sapiezynski P, Cuttone A, Madsen MM, Larsen JE, Lehmann S (2014) Measuring large-scale social networks with high resolution. PLoS ONE 9(4):e95978

    Article  Google Scholar 

  • Sun Y, Han J (2012) Mining heterogeneous information networks: principles and methodologies. Synth Lect Data Min Knowl Discov 3(2):1–159

    Article  Google Scholar 

  • Sun Y, Han J (2013) Meta-path-based search and mining in heterogeneous information networks. Tsinghua Sci Technol 18(4):329–338

    Article  Google Scholar 

  • Sun Y, Barber R, Gupta M, Aggarwal CC, Han J (2011) Co-author relationship prediction in heterogeneous bibliographic networks. In: 2011 International conference on advances in social networks analysis and mining (ASONAM). IEEE, pp 121–128

  • Szell M, Lambiotte R, Thurner S (2010) Multirelational organization of large-scale social networks in an online world. Proc Natl Acad Sci 107(31):13636–13641

    Article  Google Scholar 

  • Tang J, Lou T, Kleinberg J (2012) Inferring social ties across heterogenous networks. In: Proceedings of the fifth ACM international conference on web search and data mining. ACM, pp 743–752

  • Trusov M, Bodapati AV, Bucklin RE (2010) Determining influential users in internet social networks. J Mark Res 47(4):643–658

    Article  Google Scholar 

  • Varol O, Ferrara E, Davis CA, Menczer F, Flammini A (2017) Online human-bot interactions: detection, estimation, and characterization. In: Eleventh international AAAI conference on web and social media

  • Wang C, Satuluri V, Parthasarathy S (2007) Local probabilistic models for link prediction. In: Seventh IEEE international conference on data mining, ICDM 2007. IEEE, pp 322–331

  • Weng J, Lim E-P, Jiang J, He Q (2010) Twitterrank: finding topic-sensitive influential twitterers. In: Proceedings of the third ACM international conference on web search and data mining. ACM, pp 261–270

  • Wu Z, Lin Y, Wang J, Gregory S (2016) Link prediction with node clustering coefficient. Phys A Stat Mech Appl 452:1–8

    Article  Google Scholar 

  • Xiao C, Zhang Y, Zeng X, Wu Y (2013) Predicting user influence in social media. JNW 8(11):2649–2655

    Article  Google Scholar 

  • Yuan G, Murukannaiah PK, Zhang Z, Singh MP (2014) Exploiting sentiment homophily for link prediction. In: Proceedings of the 8th ACM conference on recommender systems. ACM, pp 17–24

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantelis Vikatos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a revised and extended version of the article: Gryllos, Prokopios, Christos Makris, and Pantelis Vikatos. Marketing campaign targeting using bridge extraction. Proceedings of the Symposium on Applied Computing. ACM, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikatos, P., Gryllos, P. & Makris, C. Marketing campaign targeting using bridge extraction in multiplex social network. Artif Intell Rev 53, 703–724 (2020). https://doi.org/10.1007/s10462-018-9675-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-018-9675-6

Keywords

Navigation