Skip to main content
Log in

A survey on facial soft biometrics for video surveillance and forensic applications

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

The face is one of the most reliable and easy-to-acquire biometric features, widely used for the recognition of individuals. In controlled environments facial recognition systems are highly effective, however, in real world scenarios and under varying lighting conditions, pose changes, facial expressions, occlusions and low resolution of captured images/videos, the task of recognizing faces becomes significantly complex. In this context it has been shown that certain attributes can be retrieved with a relative probability of success, being useful to complement a non conclusive result of a biometric system. In this paper we present an overview on face describable visual attributes and in particular of the so-called soft biometrics (e.g., facial marks, gender, age, skin color, and other physical characteristics). We review core issues regarding this topic, for instance what are the soft biometrics, which of them are the most robust in video surveillance and other uncontrolled scenarios, how different approaches have been addressed in the literature for their representation and classification, which datasets can be used for evaluation, which related problems remain unresolved and which are the possible ways to approach them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Source Taken from Antipov et al. (2017)

Fig. 6

Source Taken from Moeini et al. (2017)

Fig. 7

Source Taken from Rothe et al. (2016)

Fig. 8

Source Taken from Bekhouche et al. (2017)

Similar content being viewed by others

Notes

  1. http://www.openu.ac.il/home/hassner/projects/cnnagegender.

  2. http://fipa.cs.kit.edu.

  3. http://www-prima.inrialpes.fr/FGnet/.

  4. http://vis-www.cs.umass.edu/lfw/.

References

  • Antipov G, Baccouche M, Berrani SA, Dugelay JL (2017) Effective training of convolutional neural networks for face-based gender and age prediction. Pattern Recognit (PR) 72(C):15–26

    Article  Google Scholar 

  • Awwad A, Ahmad A, Walid AS (2013) Arabic race classification of face images. Int J Comput Technol 4(2):234–239

    Google Scholar 

  • Becerra-Riera F, Méndez-Vázquez H, Morales-González A, Tistarelli M (2017a) Age and gender classification using local appearance descriptors from facial components. In: International joint conference on biometrics (IJCB). IEEE, Piscataway, pp 799–804

  • Becerra-Riera F, Morales-Gonález A, Méndez-Vázquez H (2017b) Facial marks for improving face recognition. Pattern Recognit Lett (PRLetters) 113:3–9

    Article  Google Scholar 

  • Becerra-Riera F, Morales-González A, Méndez-Vázquez H (2018) Exploring local deep representations for facial gender classification in videos. In: International workshop on artificial intelligence and pattern recognition (IWAIPR). Lecture notes in computer science, vol 11047. Springer, Berlin, pp 104–112

  • Bekhouche SE, Ouafi A, Dornaika F, Taleb-Ahmed A, Hadid A (2017) Pyramid multi-level features for facial demographic estimation. Expert Syst Appl 80(C):297–310

    Article  Google Scholar 

  • Bekios-Calfa J, Buenaposada JM, Baumela L (2014) Robust gender recognition by exploiting facial attributes dependencies. Pattern Recognit Lett (PRLetters) 36:228–234

    Article  Google Scholar 

  • Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. Trans Pattern Anal Mach Intell (TPAMI) 35(8):1798–1828

    Article  Google Scholar 

  • Beveridge JR, Phillips PJ, Bolme DS, Draper BA, Givens GH, Lui YM, Teli MN, Zhang H, Scruggs WT, Bowyer KW, Flynn PJ, Cheng S (2013) The challenge of face recognition from digital point-and-shoot cameras. In: BTAS. IEEE, Piscataway, pp 1–8

  • Bruce V, Burtonu AM, Hanna E, Healey P, Mason O, Coombes A, Fright R, Linney A (1993) Sex discrimination: how do we tell the difference between male and female faces? Perception 22:131–152

    Article  Google Scholar 

  • Brunelli R, Poggio T (1993) Face recognition: features versus templates. Trans Pattern Anal Mach Intell (TPAMI) 15(10):1042–1052

    Article  Google Scholar 

  • Canziani A, Paszke A, Culurciello E (2017) An analysis of deep neural network models for practical applications. In: International symposium on circuits and systems

  • Carcagnì P, Coco MD, Cazzato D, Leo M, Distante C (2015) A study on different experimental configurations for age, race, and gender estimation problems. EURASIP J Image Video Process 2015(1):37

    Article  Google Scholar 

  • Carnicky J, Chorvat J (2006) Three-dimensional measurement of human face with structured-light illumination. Meas Sci Rev 6:1–4

    Google Scholar 

  • Castrillón-Santana M, Lorenzo-Navarro J, Ramón-Balmaseda E (2013) Improving gender classification accuracy in the wild. In: 18th Iberoamerican congress on pattern recognition (CIARP). Springer, Berlin, pp 270–277

  • Castrillón-Santana M, Lorenzo-Navarro J, Ramón-Balmaseda E (2017) Descriptors and regions of interest fusion for in- and cross-database gender classification in the wild. Image Vis Comput 57(C):15–24

    Article  Google Scholar 

  • Castrillón-Santana M, Marsico MD, Nappi M, Riccio D (2017) Meg: texture operators for multi-expert gender classification. Comput Vis Image Underst 156:4–18

    Article  Google Scholar 

  • Chen BC, Chen CS, Hsu WH (2014) Cross-age reference coding for age-invariant face recognition and retrieval. In: European conference on computer vision (ECCV). Lecture notes in computer science, vol 8694. Springer, Berlin, pp 768–783

  • Chen BC, Chen YY, Kuo YH, Hsu WH (2013) Scalable face image retrieval using attribute-enhanced sparse codewords. Trans Multimed 15:1163–1173

    Article  Google Scholar 

  • Dago-Casas P, D.González-Jiménez Long-Yu L, Alba-Castro JL (2011) Single- and cross-database benchmarks for gender classification under unconstrained settings. In: International conference on computer vision (ICCV) workshops. IEEE, Piscataway, pp 2152–2159

  • Dantcheva A, Elia P, Ross A (2016) What else does your biometric data reveal? A survey on soft biometrics. Trans Inf Forensics Secur (TIFS) 11(3):441–467

    Article  Google Scholar 

  • Dantcheva A, Velardo C, D’angelo A, Dugelay JL (2011) Bag of soft biometrics for person identification: new trends and challenges. Mutimed Tools Appl 51(2):739–777

    Article  Google Scholar 

  • Demirkus M, Precup D, Clark JJ, Arbel T (2015) Hierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos. Comput Vis Image Underst 136:128–145

    Article  Google Scholar 

  • Demirkus M, Precup D, Clark JJ, Arbel T (2016) Hierarchical spatio-temporal probabilistic graphical model with multiple feature fusion for binary facial attribute classification in real-world face videos. IEEE Trans Pattern Anal Mach Intell 38(6):1185–1203

    Article  Google Scholar 

  • Deng Y, Luo P, Loy CC, Tang X (2014) Pedestrian attribute recognition at far distance. In: 22nd International conference on multimedia, MM ’14. ACM, New York, pp 789–792

  • Eidinger E, Enbar R, Hassner T (2014) Age and gender estimation of unfiltered faces. Trans Inf Forensics Secur (TIFS) 9(12):2170–2179

    Article  Google Scholar 

  • Eldib MY, El-Saban M (2010) Human age estimation using enhanced bio-inspired features (ebif). In: International conference on image processing (ICIP), pp 1589–1592

  • Eldib MY, Onsi HM (2011) Human age estimation framework using different facial parts. Egypt Inform J 12(1):53–59

    Article  Google Scholar 

  • Farkas LG (1994) Anthropometry of the head and face. Raven Press, Dhaka

    Google Scholar 

  • Fellous JM (1997) Gender discrimination and prediction on the basis of facial metric information. Vis Res 37(14):1961–1973

    Article  Google Scholar 

  • Fu S, He H, Hou ZG (2014) Learning race from face: a survey. Trans Pattern Anal Mach Intell (TPAMI) 36(12):2483–2509

    Article  Google Scholar 

  • Fu Y, Guo G, Huang TS (2010) Age synthesis and estimation via faces: a survey. Trans Pattern Anal Mach Intell (TPAMI) 32(11):1955–1976

    Article  Google Scholar 

  • Gallagher A, Chen T (2009) Understanding images of groups of people. In: Conference on computer vision and pattern recognition(CVPR), vol 00, pp 256–263

  • Geng X, Zhou ZH, Smith-Miles K (2007) Automatic age estimation based on facial aging patterns. Trans Pattern Anal Mach Intell (TPAMI) 29(12):2234–2240

    Article  Google Scholar 

  • González-Sosa E, Fiérrez J, Vera-Rodríguez R, Alonso-Fernández F (2018) Facial soft biometrics for recognition in the wild: recent works, annotation and cots evaluation. Trans Inf Forensics Secur (TIFS) 13(7):2001–2014

    Article  Google Scholar 

  • Gunay A, Nabiyev VV (2008) Automatic age classification with lbp. In: International symposium on computer and information sciences (ISCIS). IEEE, Piscataway

  • Guo G, Dyer CR, Fu Y, Huang TS (2009) Is gender recognition affected by age?. IEEE, Piscataway, pp 2032–2039

    Google Scholar 

  • Guo G, Mu G (2010) A study of large-scale ethnicity estimation with gender and age variations. In: Conference on computer vision and pattern recognition (CVPR) workshops. IEEE, Piscataway, pp 79–86

  • Han H, Jain AK (2014) Age, gender and race estimation from unconstrained face images

  • Han H, Jain AK, Shan S, Chen X (2017) Heterogeneous face attribute estimation: a deep multi-task learning approach. Trans Pattern Anal Mach Intell (TPAMI) 40:2597–2609

    Article  Google Scholar 

  • Han H, Otto C, Liu X, Jain AK (2015) Demographic estimation from face images: human vs. machine performance. Trans Pattern Anal Mach Intell (TPAMI) 37(6):1148–1161

    Article  Google Scholar 

  • Hu SYD, Jou B, Jaech A, Savvides M (2011) Fusion of region-based representations for gender identification. In: International joint conference on biometrics (IJCB). IEEE, Piscataway, pp 1–7

  • Huang D, Ding H, Wang C, Wang Y, Zhang G, Chen L (2014) Local circular patterns for multi-modal facial gender and ethnicity classification. Image Vis Comput 32(12):1181–1193

    Article  Google Scholar 

  • Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Tech Rep. University of Massachusetts, Amherst, pp 07-49

  • Huang T, Xiong Z, Zhang Z (2005) Face recognition applications. Springer, New York, pp 371–390

    Google Scholar 

  • Huang Z, Shan S, Wang R, Zhang H, Lao S, Kuerban A, Chen X (2015) A benchmark and comparative study of video-based face recognition on cox face database. IEEE Trans Image Process 24(12):5967–5981

    Article  MathSciNet  MATH  Google Scholar 

  • Jain A, Huang J (2004) Integrating independent components and linear discriminant analysis for gender classification. In: 6th International conference on automatic face and gesture recognition (FGR). IEEE, Piscataway, pp 159–163

  • Jain AK, Dass SC, Nandakumar K, N K (2004a) Can soft biometric traits assist user recognition? In: Biometric technology for human identification, vol 5404. SPIE, Bellingham, pp 561–572

  • Jain AK, Dass SC, Nandakumar K, N K (2004b) Soft biometric traits for personal recognition systems. In: International conference on biometric authentication, pp 731–738

  • Jain AK, Klare B, Park U (2011) Face recognition: some challenges in forensics. In: 9th International conference on automatic face and gesture recognition and workshops (FGR). IEEE, Piscataway, pp 726–733

  • Jain AK, Ross A, Prabhakar S (2004) An introduction to biometric recognition. Trans Circuits Syst Video Technol 14(1):4–20

    Article  Google Scholar 

  • Jia S, Cristianini N (2015) Learning to classify gender from four million images. Pattern Recognit Lett (PRLetters) 58(C):35–41

    Article  Google Scholar 

  • Jr KR, Tesafaye T (2006) Morph: a longitudinal image database of normal adult age-progression. In: 7th International conference on automatic face and gesture recognition (FGR). IEEE, Piscataway, pp 341–345

  • Juefei-Xu F, Verma E, Goel P, Cherodian A, Savvides M (2016) Deepgender: occlusion and low resolution robust facial gender classification via progressively trained convolutional neural networks with attention. In: Conference on computer vision and pattern recognition (CVPR) workshops. IEEE, Piscataway, pp 136–145

  • Khan A, Majid A, Mirza AM (2005) Combination and optimization of classifiers in gender classification using genetic programming. Int J Knowl-Based Intell Eng Syst (IJKBIES) 9(1):1–11

    Google Scholar 

  • Khan R, Hanbury A, Stöttinger J, Bais A (2012) Color based skin classification. Pattern Recognit Lett (PRLetters) 33(2):157–163

    Article  Google Scholar 

  • Kim M, Cheeyong K (2015) Augmented reality fashion apparel simulation using a magic mirror. Int J Smart Home 9(2):169–178

    Article  Google Scholar 

  • Kumar N, Belhumeur PN, Nayar SK (2008) Facetracer: A search engine for large collections of images with faces. In: 10th European conference on computer vision (ECCV). Lecture notes in computer science, vol 5305. Springer, Berlin, pp 340–353

  • Kumar N, Berg AC, Belhumeur PN, Nayar SK (2009) Attribute and simile classifiers for face verification. In: 12th International conference on computer vision (ICCV). IEEE, Piscataway, pp 365–372

  • Kumar N, Berg AC, Belhumeur PN, Nayar SK (2011) Describable visual attributes for face verification and image search. Trans Pattern Anal Mach Intell (TPAMI) 33(10):1962–1977

    Article  Google Scholar 

  • Kwon YH, da Vitoria Lobo N (1999) Age classification from facial images. Comput Vis Image Underst 74(1):1–21

    Article  Google Scholar 

  • Lanitis A, Taylor CJ, Cootes TF (2002) Toward automatic simulation of aging effects on face images. Trans Pattern Anal Mach Intell (TPAMI) 24(4):442–455

    Article  Google Scholar 

  • Levi G, Hassner T (2015) Age and gender classification using convolutional neural networks. In: Conference on computer vision and pattern recognition (CVPR) workshops. IEEE, Piscataway, pp 34–42

  • Li SZ, Jain A (2015) Encyclopedia of biometrics. Springer, Berlin

    Book  Google Scholar 

  • Li T, Chang H, Wang M, Ni B, Hong R, Yan S (2015) Crowded scene analysis: a survey. Trans Circuits Syst Video Technol 25:367–386

    Article  Google Scholar 

  • Liu C, Wechsler H (2002) Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. Trans Image Process 11(4):467–476

    Article  Google Scholar 

  • Liu H, Lu J, Feng J, Zhou J (2017) Ordinal deep feature learning for facial age estimation. In: 12th International conference on automatic face and gesture recognition (FGR). IEEE, Piscataway, pp 157–164

  • Liu Z, Luo P, Wang X, Tang X (2015) Deep learning face attributes in the wild. In: International conference on computer vision (ICCV). IEEE, Piscataway, pp 3730–3738

  • Lu X, Jain AK (2004) Ethnicity identification from face images. In: Biometric technology for human identification, vol 5404. SPIE, Bellingham, pp 114–123

    Chapter  Google Scholar 

  • Lyons MJ, Budynek J, Plante A, Akamatsu S (2000) Classifying facial attributes using a 2-d gabor wavelet representation and discriminant analysis. In: 4th International conference on automatic face and gesture recognition (FGR), pp 202–207

  • Manesh FS, Ghahramani M, Tan YP (2010) Facial part displacement effect on template-based gender and ethnicity classification. In: 11th International conference on control automation robotics vision (ICARCV). IEEE, Piscataway, pp 1644–1649

  • Mansanet J, Albiol A, Paredes R (2016) Local deep neural networks for gender recognition. Pattern Recognit Lett (PRLetters) 70(C):80–86

    Article  Google Scholar 

  • Martínez A, Benavente R (1998) The ar face database. In: Tech Rep 24. Computer Vision Center, Barcelona

  • Merkow J, Jou B, Savvides M (2010) An exploration of gender identification using only the periocular region. In: 4th International conference on biometrics: theory applications and systems (BTAS). IEEE, Piscataway, pp 1–5

  • Microsoft: how old do i look? (2015). https://how-old.net/

  • Minear M, Park DC (2004) A lifespan database of adult facial stimuli. Behav Res Methods, Instrum Comput 36(4):630–633

    Article  Google Scholar 

  • Moeini A, Moeini H, Safai AM, Faez K (2017) Regression facial attribute classification via simultaneous dictionary learning. Pattern Recognit (PR) 62:99–113

    Article  Google Scholar 

  • Mozaffari S, Behravan H, Akbari R (2010) Gender classification using single frontal image per person: combination of appearance and geometric based features. In: 20th International conference on pattern recognition (ICPR). IEEE, Piscataway, pp 1192–1195

  • Muhammad G, Hussain M, Alenezy F, Bebis G, Mirza AM, Aboalsamh H (2012) Race classification from face images using local descriptors. Int J Artif Intell Tools 21(5):1250019

    Article  Google Scholar 

  • Muhammad G, Hussain M, Alenezy F, Bebis G, Mirza AM, Aboalsamh H (2012) Race recognition from face images using weber local descriptor. In: 19th International conference on systems, signals and image processing (IWSSIP), pp 421–424

  • Nixon M (1985) Eye spacing measurement for facial recognition. SPIE, Bellingham, pp 279–283

    Google Scholar 

  • Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recognit (PR) 29(1):51–59

    Article  Google Scholar 

  • Ou Y, Wu X, Qian H, Xu Y (2005) A real time race classification system. In: International conference on information acquisition. IEEE, Piscataway

  • Parkhi OM, Vedaldi A, Zisserman A (2015) Deep face recognition. In: Proceedings of the British Machine Vision Conference 2015. BMVC, Swansea, pp 41.1–41.12, 7–10 Sept 2015

  • Phillips PJ, Wechsler H, Huang J, Rauss PJ (1998) The feret database and evaluation procedure for face-recognition algorithms. Image Vis Comput 16(5):295–306

    Article  Google Scholar 

  • Radu I (2014) Augmented reality in education: a meta-review and cross-media analysis. Pers Ubiquitous Comput 18(6):1533–1543

    Article  Google Scholar 

  • Ramanathan N, Chellappa R (2006) Modeling age progression in young faces. Conf Comput Vis Pattern Recognit (CVPR) 1:387–394

    Google Scholar 

  • Rhodes H (1956) Alphonse Bertillon: father of scientific detection. Abelard-Schuman, Bishopbriggs

    Google Scholar 

  • Riccio D, Tortora G, Marsico MD, Wechsler H (2012) Ega-ethnicity, gender and age, a pre-annotated face database. In: Workshop on biometric measurements and systems for security and medical applications (BIOMS). IEEE, Piscataway, pp 1–8

  • Rodríguez P, Cucurull G, Gonfaus JM, Roca FX, González J (2017) Age and gender recognition in the wild with deep attention. Pattern Recognit (PR) 72(C):563–571

    Article  Google Scholar 

  • Roomi SMM, Virasundarii SL, Selvamegala S, Jeevanandhame S, Hariharasudhan D (2011) Race classification based on facial features. In: 3rd National conference on computer vision, pattern recognition, image processing and graphics (NCVPRIPG). IEEE, Piscataway, pp 54–57

  • Rothe R, Timofte R, Gool LV (2016) Deep expectation of real and apparent age from a single image without facial landmarks. Int J Comput Vis (IJCV) 126(2–4):144–157

    MathSciNet  Google Scholar 

  • Sahoo TK, Banka H (2017) New hybrid pca-based facial age estimation using inter-age group variation-based hierarchical classifier. Arab J Sci Eng 42(8):3337–3355

    Article  Google Scholar 

  • Salah SH, Du H, Al-Jawad N (2013) Fusing local binary patterns with wavelet features for ethnicity identification. Int J Comput, Inf, Syst Control Eng 7:330–336

    Google Scholar 

  • Scholz J, Smith AN (2016) Augmented reality: designing immersive experiences that maximize consumer engagement. Bus Horiz 59(2):149–161

    Article  Google Scholar 

  • Selim M, Sundararajan S, Pagani A, Stricker D (2018) Image quality-aware deep networks ensemble for efficient gender recognition in the wild. In: Proceedings of the 13th international joint conference on computer vision, imaging and computer graphics theory and applications (VISIGRAPP), vol 5

  • Semertzidis T, Axenopoulos A, Karadimos P, Daras P (2016) Soft biometrics in low resolution and low quality cctv videos. In: 7th International conference on imaging for crime detection and prevention (ICDP). IET, Stevenage

  • Shan C (2012) Learning local binary patterns for gender classification on real world face images. Pattern Recognit Lett (PRLetters) 33(4):431–437

    Article  Google Scholar 

  • Amilia Sindi, Dwi Mahmud, Sulistiyo RND (2015) Face image-based gender recognition using complex-valued neural network. In: 3rd International conference on information and communication technology (ICoICT)

  • Stoyanova J, Georgieva P, Brito PQ, Milanova M (2015) Comparison of consumer purchase intention between interactive and augmented reality shopping platforms through statistical analyses. In: International symposium on innovations in intelligent sysTems and applications (INISTA), pp 62–69

  • Tapia JE, Perez CA (2013) Gender classification based on fusion of different spatial scale features selected by mutual information from histogram of lbp, intensity, and shape. Trans Inf Forensics Secur (TIFS) 8(3):488–499

    Article  Google Scholar 

  • Thida M, Yong YL, Climent-Pérez P, Lung Eng H, Remagnino P (2013) A literature review on video analytics of crowded scenes. Springer, Berlin, pp 17–36

    Google Scholar 

  • Tin HHK, Sein MM (2011) Race identification for face images 1(02)

  • Tistarelli M, Yadav D, Vatsa M, Singh R (2013) Short and long-time ageing effects in face recognition. Age Factors Biom Process, Chapter

  • Tome P, Vera-Rodríguez R, Fiérrez J, Ortega-García J (2015) Facial soft biometric features for forensic face recognition. Forensic Sci Int 257:271–284

    Article  Google Scholar 

  • Wang JG, Li J, Yau WY, Sung E (2010) Boosting dense sift descriptors and shape contexts of face images for gender recognition. In: Conference on computer vision and pattern recognition (CVPR) workshops, pp 96–102

  • Wang W, He F, Zhao Q (2016) Facial ethnicity classification with deep convolutional neural networks. In: Chinese conference on biometric recognition (CCBR). Lecture notes in computer science, vol 9967, pp 176–185

  • Wang X, Guo R, Kambhamettu C (2015) Deeply-learned feature for age estimation. In: Winter conference on applications of computer vision (WACV), pp 534–541

  • Wild HA, Barrett SE, Spence MJ, O’Toole AJ, Cheng YD, Brooke J (2000) Recognition and sex categorization of adults’ and children’s faces: examining performance in the absence of sex-stereotyped cues. J Exp Child Psychol 77(4):269–291

    Article  Google Scholar 

  • Wolf L, Hassner T, Maoz I (2011) Face recognition in unconstrained videos with matched background similarity. In: CVPR. IEEE Computer Society, Washington, DC, pp 529–534

  • Xia B, Sun H, Lu BL (2008) Multi-view gender classification based on local gabor binary mapping pattern and support vector machines. In: International joint conference on neural networks (IJCNN). IEEE, Piscataway, pp 3388–3395

  • Yang Z, Ai H (2007) Demographic classification with local binary patterns. In: Lecture notes in computer science. Springer, Berlin, pp 464–473

  • Yin L, Wei X, Sun Y, Wang J, Rosato MJ (2006) A 3d facial expression database for facial behavior research. In: 7th International conference on automatic face and gesture recognition (FGR). IEEE, Piscataway, pp 211–216

  • Ylioinas J, Hadid A, Pietikäinen M (2012) Age classification in unconstrained conditions using lbp variants. In: 21st International conference on pattern recognition (ICPR). IEEE, Piscataway, pp 1257–1260

  • Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: Which helps face recognition? In: International conference on computer vision (ICCV). IEEE, Piscataway, pp 471–478

  • Zhang N, Paluri M, Ranzato M, Darrell T, Bourdev LD (2014) Panda: Pose aligned networks for deep attribute modeling. In: Conference on computer vision and pattern recognition (CVPR). IEEE, Piscataway, pp 1637–1644

  • Zhong Y, Sullivan J, Li H (2016) Face attribute prediction using off-the-shelf deep learning networks. In: International conference on biometrics (ICB). IEEE, Piscataway

  • Zhu J, Liao S, Lei Z, Yi D, Li SZ (2013) Pedestrian attribute classification in surveillance: database and evaluation. In: International conference on computer vision workshops, ICCVW ’13. IEEE, Piscataway, pp 331–338

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heydi Méndez-Vázquez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becerra-Riera, F., Morales-González, A. & Méndez-Vázquez, H. A survey on facial soft biometrics for video surveillance and forensic applications. Artif Intell Rev 52, 1155–1187 (2019). https://doi.org/10.1007/s10462-019-09689-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-019-09689-5

Keywords

Navigation