Skip to main content
Log in

On the frontiers of pose invariant face recognition: a review

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Computer vision systems open a new challenge to recognize human faces under varied poses in similar capacity and capability as human-beings perform naturally. For surveillance applications, pose-invariant face recognition (PIFR) will become a major break-through by presenting the solution of this unique challenge. In recent decade, several techniques are presented to address this challenge over well-known data-sets. These efforts are divided chronologically into seven different approaches say geometric, statistical, holistic, template, supervised learning, unsupervised learning and deep learning. Among these deep learning techniques have shown more promising results and have gained attention for future research. By reviewing PIFR, it is historically divided into five eras based on 160 referred papers and their cumulative citations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

AAM:

Active appearance models

ASM:

Active shape model

BU3DFE:

Binghamton University 3D facial expression

CMUPIE:

Carnegie Mellon University-pose illumination expression

CNN:

Convolutional neural network

CLS:

Correspondence latent subspace

CSGPR:

Coupled Scale Gaussian Process Regression

DCCA:

Deep canonical correlation analysis

DNN:

Deep neural network

DR-GAN:

Disentagled representation learning-generative adversarial

FR:

Face recognition

FERET:

Face recognition technology

FSS:

Face-specific subspace

FLD:

Fisher linear discriminant

GTP:

Gabor ternary pattern

GMM:

Gaussian mixture model

GMA:

Generalized multi-view analysis

GEM:

Generic elastic model

HMM:

Hidden Markov models

HLA:

Hybrid learning algorithm

ICP:

Iterative closest point

KL:

Karmen Loeve

KCCA:

Kernel canonical correlation analysis

LFW:

Labeled faces in the wild

LBP:

Linear binary pattern

LDA:

Linear discriminant analysis

MRF:

Markov random field

MKD:

Multi key descriptor

M2VTS:

Multi modal verification for teleservices and security application

MultiPIE:

Multi-pose illumination expression

PaSC:

Point and shoot challenge face recognition

PIFR:

Pose invariant face recognition

PCA:

Principal component analysis

PEM:

Probabilistic elastic model

PEP:

Probabilistic elastic part

PubFig:

Public figures face database

RBF:

Radial basis function

RGT:

Re-normalization group theory

RBM:

Restricted Boltzmann machine

SIFT:

Scale invariant feature transform

SJP:

Single jet presentation

SVD:

Singular value decomposition

SRC:

Sparse representation classification

YTC:

YouTube faces database

References

  • Abiantun R, Prabhu U, Savvides M (2014) Sparse feature extraction for pose-tolerant face recognition. IEEE Trans Pattern Anal Mach Intell 36(10):2061–2073. https://doi.org/10.1109/TPAMI.2014.2313124

    Article  Google Scholar 

  • Ahonen T, Hadid A, Pietikäinen M (2004) Face recognition with local binary patterns. In: European conference on computer vision. Springer, pp 469–481

  • Akamatsu S, Sasaki T, Fukamachi H, Suenaga Y (1991) A robust face identification scheme—KL expansion of an invariant feature space. In: Intelligent robots and computer vision X, vol 1607

  • Akhtar Z, Rattani A (2017) A face in any form: new challenges and opportunities for face recognition technology. Computer 50(4):80–90. https://doi.org/10.1109/MC.2017.119

    Article  Google Scholar 

  • Alam M, Vidyaratne LS, Iftekharuddin KM (2018) Sparse simultaneous recurrent deep learning for robust facial expression recognition. IEEE Trans Neural Netw Learn Systems PP(99):1–12. https://doi.org/10.1109/TNNLS.2017.2776248

    Article  Google Scholar 

  • Andrew G, Arora R, Bilmes J, Livescu K (2013) Deep canonical correlation analysis. In: International conference on international conference on machine learning 28:1248–1255

  • Arandjelovia O, Cipolla R (2013) Achieving robust face recognition from video by combining a weak photometric model and a learnt generic face invariant. Pattern Recognit 46(1):9–23. https://doi.org/10.1016/j.patcog.2012.06.024

    Article  Google Scholar 

  • Arashloo S, Kittler J (2011) Energy normalization for pose-invariant face recognition based on MRF model image matching. IEEE Trans Pattern Anal Mach Intell 33(6):1274–1280

    Google Scholar 

  • Arashloo S, Kittler J (2013) Efficient processing of MRFs for unconstrained-pose face recognition. In: IEEE sixth international conference on biometrics: theory, applications and systems (BTAS), pp 1–8

  • Arashloo SR, Kittler J, Christmas WJ (2011) Pose-invariant face recognition by matching on multi-resolution mrfs linked by supercoupling transform. Comput Vis Image Underst 115(7):1073–1083. https://doi.org/10.1016/j.cviu.2010.12.006 special issue on Graph-Based Representations in Computer Vision

    Article  Google Scholar 

  • Ashraf A, Lucey S, Chen T (2008) Learning patch correspondences for improved viewpoint invariant face recognition. In: 2008 IEEE conference on computer vision and pattern recognition (CVPR), pp 1–8

  • Asthana A, Sanderson C, Gedeon T, Goecke R (2009) Learning-based face synthesis for pose-robust recognition from single image. In: Proceedings of British machine vision conference, pp 1–10

  • Asthana A, Jones M, Marks T, Tieu K, Goecke R (2011) Pose normalization via learned 2D warping for fully automatic face recognition. In: 22nd British machine vision conference, pp 1–11

  • Baltrusaitis T (2014) Automatic facial expression analysis

  • Baltrušaitis T, Robinson P, Morency L (2012) 3d constrained local model for rigid and non-rigid facial tracking. In: 2012 IEEE conference on computer vision and pattern recognition, pp 2610–2617. https://doi.org/10.1109/CVPR.2012.6247980

  • Beham D, Roomi M (2014) Face recognition under uncontrolled conditions: a compact dictionary based approach. J Imaging Sci Technol 58:50505-1

    Google Scholar 

  • Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Google Scholar 

  • Beymar D (1994) Face recognition under varying pose. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 756–761

  • Blanz V, Vetter T (2003) Face recognition based on fitting a 3d morphable model. IEEE Trans Pattern Anal Mach Intell 25(9):1063–1074

    Google Scholar 

  • Brunelli R, Poggio T (1993) Face recognition: features versus templates. IEEE Trans Pattern Anal Mach Intell 15(10):1042–1052

    Google Scholar 

  • Cao Z, Yin Q, Tang X, Sun J (2010) Face recognition with learning-based descriptor. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2707–2714

  • Castillo C, Jacobs D (2007) Using stereo matching for 2-D face recognition across pose. In: 2007 IEEE conference on computer vision and pattern recognition (CVPR), pp 1–8

  • Chai X, Shan S, Chen X, Gao W (2007) Locally linear regression for pose-invariant face recognition. IEEE Trans Image Process 16(7):1716–1725

    MathSciNet  Google Scholar 

  • Chan TH, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) Pcanet: a simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032. https://doi.org/10.1109/TIP.2015.2475625

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Y, Su J (2016) Sparse embedded dictionary learning on face recognition. Pattern Recognit 64:51–519

    Google Scholar 

  • Chen L, Liao H, Ko M, Lin J, Yu G (2000) A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognit 33:1713–1726

    Google Scholar 

  • Chen D, Cao X, Wen F, Sun J (2013) Blessing of Dimensionality: high-dimensional feature and its efficient compression for face verification. In: IEEE international conference of computer vision and pattern recognition (CVPR), pp 3025–3032

  • Cheng Y, Liu K, J Y, Wang H (1991) A robust algebraic method for human face recognition. In: 11th international conference on pattern recognition (ICPR), 2:221–224

  • Cheng G, Zhou P, Han J (2018) Duplex metric learning for image set classification. IEEE Trans Image Process 27(1):281–292. https://doi.org/10.1109/TIP.2017.2760512

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng EJ, Chou KP, Rajora S, Jin BH, Tanveer M, Lin CT, Young KY, Lin WC, Prasad M (2019) Deep sparse representation classifier for facial recognition and detection system. Pattern Recognit Lett 125:71–77. https://doi.org/10.1016/j.patrec.2019.03.006

    Article  Google Scholar 

  • Chiachia G, Falcao AX, Pinto N, Rocha A, Cox D (2014) Learning person-specific representations from faces in the wild. IEEE Trans Inf Forensics Secur 9(12):2089–2099. https://doi.org/10.1109/TIFS.2014.2359543

    Article  Google Scholar 

  • Chopra S, Hadsell R, LeCun Y (2005) Learning a similarity metric discriminatively, with application to face verification. In: IEEE computer society conference on computer vision and pattern recognition, 2005. CVPR 2005. IEEE, vol 1, pp 539–546

  • Chou KP, Prasad M, Li DL, Bharill N, Lin YF, Hussain F, Lin CT, Lin WC (2017) Automatic multi-view action recognition with robust features. In: Liu D, Xie S, Li Y, Zhao D, El-Alfy ESM (eds) Neural information processing. Springer, Cham, pp 554–563

    Google Scholar 

  • Chow G, Li X (1993) Towards a system for automatic facial feature detection. Pattern Recognit 26(12):1739–1755

    Google Scholar 

  • Cootes TF, Edwards GJ, Taylor CT (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–685

    Google Scholar 

  • De Marsico M, Nappi M, Riccio D, Wechsler H (2013) Robust face recognition for uncontrolled pose and illumination changes. IEEE Trans Syst Man Cybern Syst 43(1):149–163

    Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodol) 39:1–38

    MathSciNet  MATH  Google Scholar 

  • Deng W, Chen B, Fang Y, Hu J (2017) Deep correlation feature learning for face verification in the wild. IEEE Signal Process Lett 24(12):1877–1881. https://doi.org/10.1109/LSP.2017.2726105

    Article  Google Scholar 

  • Ding C, Tao D (2015) Robust face recognition via multimodal deep face representation. IEEE Trans Multimed 17(11):2049–2058. https://doi.org/10.1109/TMM.2015.2477042

    Article  Google Scholar 

  • Ding C, Tao D (2016) Pose-invariant face recognition with homography-based normalization. Pattern Recognit 66:144–152

    Google Scholar 

  • Ding C, Choi J, Tao D, Davis L (2015) Multi-directional multi-level dual-cross patterns for robust face recognition. IEEE Trans Pattern Anal Mach Intell 38(3):518–531

    Google Scholar 

  • Edwards GJ, Cootes TF, Taylor CJ (1998) Face recognition using active appearance models. In: European conference on computer vision. Springer, pp 581–595

  • Etemad K, Chellappa R (1996) Face recognition using discriminant eigenvectors. IEEE international conference on acoustics, speech and signal processing 4:2148–2151

  • Fischer M, Ekenel H, Stiefelhagen R (2012) Analysis of partial least squares for pose-invariant face recognition. In: IEEE fifth international conference on biometrics: theory, applications and systems (BTAS), pp 331–338

  • Galea C, Farrugia RA (2017) Forensic face photo-sketch recognition using a deep learning-based architecture. IEEE Signal Process Lett 24(11):1586–1590. https://doi.org/10.1109/LSP.2017.2749266

    Article  Google Scholar 

  • Galea C, Farrugia RA (2018) Matching software-generated sketches to face photos with a very deep CNN, morphed faces, and transfer learning. IEEE Trans Inf Forensics Secur PP(99):1. https://doi.org/10.1109/TIFS.2017.2788002

    Article  Google Scholar 

  • Gao Y, Leung MKH (2002) Face recognition using line edge map. IEEE Trans Pattern Anal Mach Intell 24:764–779

    Google Scholar 

  • Guo G, Li S, Chan K (2000) Face recognition by support vector machines. In: Proceedings fourth IEEE international conference on automatic face and gesture recognition, pp 196–201

  • Gao W, Cao B, Shan S, Chen X, Zhou D, Zhang X, Zhao D (2008) The cas-peal large-scale chinese face database and baseline evaluations. IEEE Trans Syst Man Cyber Part A Syst Hum 38(1):149–161. https://doi.org/10.1109/TSMCA.2007.909557

    Article  Google Scholar 

  • Gao H, Ekenel H, Stiefelhagen R (2009) Pose Normalization for local appearance-based face recognition. In: Tistarelli M, Nixon MS (eds) Advances in biometrics ICB 2009. Lecture notes in computer science, 5558:32–41

  • Gao S, Zhang Y, Jia K, Lu J, Zhang Y (2015) Single sample face recognition via learning deep supervised autoencoders. IEEE Trans Inf Forensics Secur 10(10):2108–2118. https://doi.org/10.1109/TIFS.2015.2446438

    Article  Google Scholar 

  • Gao G, Yang J, Jing X, Huang P, Hua J, Yue D (2016) Robust face recognition via multi-scale patch-based matrix regression. PLoS ONE 11:e0159945. https://doi.org/10.1371/journal.pone.0159945

    Article  Google Scholar 

  • Goceri E (2018) Formulas behind deep learning success

  • Goceri E, Goceri N (2017) Deep learning in medical image analysis: recent advances and future trends, pp 305–310

  • Goceri E, Gooya A (2018) On the importance of batch size for deep learning

  • González-Jiménez D, Alba-Castro JL (2007) Toward pose-invariant 2-d face recognition through point distribution models and facial symmetry. IEEE Trans Inf Forensics Secur 2(3):413–429

    Google Scholar 

  • Gottumukkal R, Asari VK (2004) An improved face recognition technique based on modular pca approach. Pattern Recognit Lett 25(4):429–436

    Google Scholar 

  • Gross R, Matthews I, Baker S (2002) Eigen light-fields and face recognition across pose. In: Fifth IEEE international conference on automatic face and gesture recognition, 2002. Proceedings. IEEE, pp 3–9

  • Gross R, Matthews I, Cohn J, Kanade T, Baker S (2010) Multi-pie. Image Vis Comput 28(5):807–813

    Google Scholar 

  • Haddadnia J, Faez K, Ahmadi M (2003) An efficient human face recognition system using pseudo zernike moment invariant and radial basis function neural network. Int J Pattern Recognit Artif Intell 17:41–62

    MATH  Google Scholar 

  • Han H, Jain AK, Shan S, Chen X (2018) Heterogeneous face attribute estimation: a deep multi-task learning approach. IEEE Trans Pattern Anal Mach Intell PP(99):1. https://doi.org/10.1109/TPAMI.2017.2738004

    Article  Google Scholar 

  • Hayat M, Bennamoun M, An S (2015) Deep reconstruction models for image set classification. IEEE Trans Pattern Anal Mach Intell 37(4):713–727. https://doi.org/10.1109/TPAMI.2014.2353635

    Article  Google Scholar 

  • Heisele B, Ho P, Wu J, Poggio T (2003) Face recognition: component-based versus global approaches. Comput Vis Image Underst 91(1):6–21. https://doi.org/10.1016/S1077-3142(03)00073-0 special Issue on Face Recognition

    Article  Google Scholar 

  • Heo J, Savvides M (2012) Gender and ethnicity specific generic elastic models from a single 2D image for novel 2D pose face synthesis and recognition. IEEE Trans Pattern Anal Mach Intell 34(12):2341–2350

    Google Scholar 

  • Ho H, Chellappa R (2013) Pose-invariant face recognition using Markov random fields. IEEE Trans Image Process 22(4):1573–1584

    MathSciNet  MATH  Google Scholar 

  • Hsu GSJ, Shie HC, Hsieh CH, Chan JS (2017) Fast landmark localization with 3d component reconstruction and CNN for cross-pose recognition. IEEE Trans Circuits Syst Video Technol PP(99):1. https://doi.org/10.1109/TCSVT.2017.2748379

    Article  Google Scholar 

  • Hu G, Peng X, Yang Y, Hospedales TM, Verbeek J (2018) Frankenstein: learning deep face representations using small data. IEEE Trans Image Process 27(1):293–303. https://doi.org/10.1109/TIP.2017.2756450

    Article  MathSciNet  MATH  Google Scholar 

  • Huang F, Zhou Z, Zhang H, Chen T (2000) Pose invariant face recognition. In: Proceedings fourth IEEE international conference on automatic face and gesture recognition, pp 245–250

  • Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Tech. Rep. 07-49, University of Massachusetts, Amherst

  • Huo J, Gao Y, Shi Y, Yang W, Yin H (2018) Heterogeneous face recognition by margin-based cross-modality metric learning. IEEE Trans Cybern PP(99):1–13. https://doi.org/10.1109/TCYB.2017.2715660

    Article  Google Scholar 

  • Jiang D, Hu Y, Yan S, Zhang L, Zhang H, Gao W (2005) Efficient 3d reconstruction for face recognition. Pattern Recognit 38(6):787–798

    Google Scholar 

  • Jourabloo A, Ye M, Liu X, Ren L (2017) Pose-invariant face alignment with a single CNN. In: IEEE conference of computer vision (ICCV), pp 3200–3209

  • Kae A, Sohn K, Lee H, Learned-Miller E (2013) Augmenting CRFs with Boltzmann machine shape priors for image labeling. In: CVPR

  • Kamencay P, Hudec R, Benco M, Zachariasova M (2014) 2D–3D face recognition method based on a modified CCA-PCA algorithm. Int J Adv Robot Syst‘ 11(3):1–9

    Google Scholar 

  • Kan M, Shan S, Chang H, Chen X (2014) Stacked progressive auto-encoders (SPAE) for face recognition across poses. In: IEEE conference on computer vision, pp 4321–4328

  • Kanade T, Yamada A (2003) Multi-subregion based probabilistic approach toward pose-invariant face recognition. In: 2003 IEEE international symposium on computational intelligence in robotics and automation, 2003. Proceedings. IEEE, vol 2, pp 954–959

  • Kim TK, Kittler J (2005) Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image. IEEE Trans Pattern Anal Mach Intell 27(3):318–327

    Google Scholar 

  • Kim T, Kittler J (2006) Design and fusion of pose-invariant face-identification experts. IEEE Trans Circuits Syst Video Technol 16(9):1096–1106

    Google Scholar 

  • Kirby M, Sirovitch L (1990) Application of the Karhunen–Loeve procedure for the characterization of human faces. IEEE Trans Pattern Anal Mach Intell 12:103–108

    Google Scholar 

  • Kumano S, Otsuka K, Yamato J, Maeda E, Sato Y (2009) Pose-invariant facial expression recognition using variable-intensity templates. Int J Comput Vis 83(2):178–194

    Google Scholar 

  • Lai JH, Yuen PC, Feng GC (2001) Face recognition using holistic Fourier invariant features. Pattern Recognit 34(1):95–109

    MATH  Google Scholar 

  • Lawrence S, Giles C, Tsoi A, Back A (1997) Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw 8(1):98–113

    Google Scholar 

  • Le H, Li H (2004) Recognizing frontal face images using hidden Markov models with one training image per person. Pattern Recognit 1(1):318–321

    Google Scholar 

  • Lee MW, Ranganath S (2003) Pose-invariant face recognition using a 3d deformable model. Pattern Recognit 36(8):1835–1846

    Google Scholar 

  • Li H, Hua G (2015) Hierarchical-pep model for real-world face recognition. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 4055–4064. https://doi.org/10.1109/CVPR.2015.7299032

  • Li H, Hua G (2018) Probabilistic elastic part model: a pose-invariant representation for real-world face verification. IEEE Trans Pattern Anal Mach Intell 40(4):918–930. https://doi.org/10.1109/TPAMI.2017.2695183

    Article  Google Scholar 

  • Li S, Lu J (1999) Face recognition using the nearest feature line method. IEEE Trans Neural Netw 10(2):439–443

    Google Scholar 

  • Li A, Shan S, Gao W (2012a) Coupled bias-variance tradeoff for cross-pose face recognition. IEEE Trans Image Process 21(1):305–315

    MathSciNet  MATH  Google Scholar 

  • Li DL, Prasad M, Hsu SC, Hong CT, Lin CT (2012b) Face recognition using nonparametric-weighted fisherfaces. EURASIP J Adv Signal Process. https://doi.org/10.1186/1687-6180-2012-92

    Article  Google Scholar 

  • Li BYL, Mian AS, Liu W, Krishna A (2013a) Using kinect for face recognition under varying poses, expressions, illumination and disguise. In: 2013 IEEE workshop on applications of computer vision (WACV), pp 186–192. https://doi.org/10.1109/WACV.2013.6475017

  • Li H, Hua G, Lin Z, Brandt J, Yang J (2013b) Probabilistic elastic matching for pose variant face verification. In: IEEE international conference on computer vision and pattern recognition, pp 3499–3509

  • Li D, Zhou H, Lam K (2015a) High-resolution face verification using pore-scale facial features. IEEE Trans Image Process 24(8):2317–2327

    MathSciNet  MATH  Google Scholar 

  • Li H, Hua G, Shen X, Lin Z, Brandt J (2015b) Eigen-pep for video face recognition. vol 9005, pp 17–33

  • Li H, Sun J, Xu Z, Chen L (2017) Multimodal 2d+3d facial expression recognition with deep fusion convolutional neural network. IEEE Trans Multimed 19(12):2816–2831. https://doi.org/10.1109/TMM.2017.2713408

    Article  Google Scholar 

  • Liao S, Jain A, Li S (2013) Partial face recognition: alignment-free approach. IEEE Trans Pattern Anal Mach Intell 35(5):1193–1205

    Google Scholar 

  • Lin S, Kung S, Lin L (1997) Face recognition/detection by probabilistic decision-based neural network. IEEE Trans Neural Netw 8(1):114–132

    Google Scholar 

  • Liu X, Chen T (2005) Pose-robust face recognition using geometry assisted probabilistic modeling. In: IEEE computer society conference on computer vision and pattern recognition, 2005. CVPR 2005. IEEE, vol 1, pp 502–509

  • Liu L, Xiong C, Zhang H, Niu Z, Wang M, Yan S (2016) Deep aging face verification with large gaps. IEEE Trans Multimed 18(1):64–75. https://doi.org/10.1109/TMM.2015.2500730

    Article  Google Scholar 

  • Lu X, Jain AK (2006) Automatic feature extraction for multiview 3d face recognition. In: 7th international conference on automatic face and gesture recognition, 2006. FGR 2006. IEEE, pp 585–590

  • Lu X, Colbry D, Jain AK (2004) Three-dimensional model based face recognition. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004. IEEE, vol 1, pp 362–366

  • Lu J, Deng W, Wang G, Zhou J (2017a) Simultaneous feature and dictionary learning for image set based face recognition. IEEE Trans Image Process 26(8):4042–4054. https://doi.org/10.1109/TIP.2017.2713940

    Article  MathSciNet  MATH  Google Scholar 

  • Lu J, Hu J, Tan YP (2017b) Discriminative deep metric learning for face and kinship verification. IEEE Trans Image Process 26(9):4269–4282. https://doi.org/10.1109/TIP.2017.2717505

    Article  MathSciNet  MATH  Google Scholar 

  • Luo J, Ma Y, Takikawa E, Lao S, Kawade M, Lu BL (2007) Person-specific sift features for face recognition. In: 2007 IEEE international conference on acoustics, speech and signal processing—ICASSP ’07, vol 2, pp II–593–II–596. https://doi.org/10.1109/ICASSP.2007.366305

  • Majumder A, Behera L, Subramanian VK (2018) Automatic facial expression recognition system using deep network-based data fusion. IEEE Trans Cybern 48(1):103–114. https://doi.org/10.1109/TCYB.2016.2625419

    Article  Google Scholar 

  • Manjani I, Tariyal S, Vatsa M, Singh R, Majumdar A (2017) Detecting silicone mask-based presentation attack via deep dictionary learning. IEEE Trans Inf Forensics Secur 12(7):1713–1723. https://doi.org/10.1109/TIFS.2017.2676720

    Article  Google Scholar 

  • Manjunath B, Challeppa R, Malsburg C (1992) A feature based approach to face recognition. In: IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 373–378

  • Masi I, Chang FJ, Choi J, Harel S, Kim J, Kim K, Leksut J, Rawls S, Wu Y, Hassner T, AbdAlmageed W, Medioni G, Morency LP, Natarajan P, Nevatia R (2018) Learning pose-aware models for pose-invariant face recognition in the wild. IEEE Trans Pattern Anal Mach Intell PP(99):1. https://doi.org/10.1109/TPAMI.2018.2792452

    Article  Google Scholar 

  • Messer K, Matas J, Kittler J, Jonsson K (1999) Xm2vtsdb: The extended m2vts database. In: Second international conference on audio and video-based biometric person authentication, pp 72–77

  • Mian A, Bennamoun M, Owens R (2008a) An efficient multimodal 2d–3d hybrid approach to automatic face recognition. IEEE Trans Pattern Anal Mach Intell 29(11):1927–1943

    Google Scholar 

  • Mian AS, Bennamoun M, Owens R (2008b) Keypoint detection and local feature matching for textured 3d face recognition. Int J Comput Vis 79(1):1–12

    Google Scholar 

  • Mostafa E, Farag A (2012) Dynamic weighting of facial features for automatic pose-invariant face recognition. In: 9th conference on computer and robot vision (CRV), pp 411–416

  • Nagpal S, Singh M, Singh R, Vatsa M (2015) Regularized deep learning for face recognition with weight variations. IEEE Access 3:3010–3018. https://doi.org/10.1109/ACCESS.2015.2510865

    Article  Google Scholar 

  • Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112

    Google Scholar 

  • Nefian A, Hayes M (1999) Face recognition using an embedded HMM. In: IEEE conference on audio and video-based biometric person authentication, pp 19–24

  • Otto C, Wang D, Jain AK (2018) Clustering millions of faces by identity. IEEE Trans Pattern Anal Mach Intell 40(2):289–303. https://doi.org/10.1109/TPAMI.2017.2679100

    Article  Google Scholar 

  • Pan Z, Healey G, Prasad M, Tromberg B (2003) Face recognition in hyperspectral images. IEEE Trans Pattern Anal Mach Intell 25(12):1552–1560

    Google Scholar 

  • Paysan P, Knothe R, Amberg B, Romdhani S, Vetter T (2009) A 3d face model for pose and illumination invariant face recognition. In: Sixth IEEE international conference on advanced video and signal based surveillance, 2009. AVSS’09. IEEE, pp 296–301

  • Peng X, Yu X, Sohn K, Metaxas D, Chandraker M (2017) Reconstruction-based disentanglement for pose-invariant face recognition. In: IEEE conference of computer vision (ICCV), pp 1632–1641

  • Pentland A, Moghaddam B, Starner T (1994) View-based and modular eigenspaces for face recognition. In: IEEE conference on computer vision and pattern recognition 26(12):81–94

  • Phillips P, Moon H, Rizvi S, Rauss P (2000) The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104

    Google Scholar 

  • Polyak A, Wolf L (2015) Channel-level acceleration of deep face representations. IEEE Access 3:2163–2175. https://doi.org/10.1109/ACCESS.2015.2494536

    Article  Google Scholar 

  • Prabhu U, Heo J, Savvides M (2011) Unconstrained pose-invariant face recognition using 3D generic elastic models. IEEE Trans Pattern Anal Mach Intell 33(10):1952–1961

    Google Scholar 

  • Prasad M, Chang LC, Gupta D, Pratama M, Sundaram S, Lin CT (2018) Online video streaming for human tracking based on weighted resampling particle filter. Proc Comput Sci 144:2–12. https://doi.org/10.1016/j.procs.2018.10.499, iNNS conference on big data and deep learning

  • Prince S, Elder J, Warrell J, Felisberti F (2008) Tied factor analysis for face recognition across large pose differences. IEEE Trans Pattern Anal Mach Intell 30(6):970–984

    Google Scholar 

  • Quan Z (1991) Algebraic feature extraction of image for recognition. Pattern Recognit 24(3):211–219

    MathSciNet  Google Scholar 

  • Ranjan R, Patel VM, Chellappa R (2017) Hyperface: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Trans Pattern Anal Mach Intell PP(99):1. https://doi.org/10.1109/TPAMI.2017.2781233

    Article  Google Scholar 

  • Rudovic O, Pantic M, Patras I (2013) Coupled Gaussian processes for pose-invariant facial expression recognition. IEEE Trans Pattern Anal Mach Intell 35(6):1357–1369

    Google Scholar 

  • Samaria F (1993) Face segmentation for identification using hidden markov models. In: British machine vision conference

  • Samaria F, Fallside F (1993) Face identification and feature extraction using hidden Markov models. Image processing: theory and applications

  • Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: Proceedings of 1994 IEEE workshop on applications of computer vision, pp 138–142. https://doi.org/10.1109/ACV.1994.341300

  • Samaria F, Young S (1994) HMM-based architecture for face recognition. Image Vis Comput 12(8):537–543

    Google Scholar 

  • Shan S, Gao W, Zhao D (2003) Face recognition based on face-specific subspace. Int J Imaging Syst Technol 13(1):23–32

    Google Scholar 

  • Sharma A, Jacobs D (2011) Bypassing synthesis: PLS for face recognition with pose, low-resolution and sketch. In: IEEE conference of computer vision and pattern recognition (CVPR) 1:593–600

  • Sharma A, Haj M, Choi J, Davis L, Jacobs D (2012a) Robust pose invariant face recognition using coupled latent space discriminant analysis. Comput Vis Image Underst 116:1095–1110

    Google Scholar 

  • Sharma A, Kumar A, Daume H, Jacobs D (2012b) Generalized multiview analysis: a discriminative latent space. In: IEEE conference on computer vision and pattern recognition, pp 2160–2167

  • Sim T, Baker S, Beat M (2003) The CMU pose, illumination and expression database. IEEE Trans Pattern Anal Mach Intell 25(12):1615–1618

    Google Scholar 

  • Singh R, Vatsa M, Ross A, Noore A (2007) A mosaicing scheme for pose-invariant face recognition. IEEE Trans Syst Man Cybern Part B (Cybernetics) 37(5):1212–1225

    Google Scholar 

  • Stringa L (1993) Eyes detection for face recognition. Appl Artif Intell 7(4):365–382. https://doi.org/10.1080/08839519308949995

    Article  Google Scholar 

  • Sun Y, Chen Y, Wang X, Tang X (2014) Deep learning face representation by joint identification-verification. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ (eds) Advances in neural information processing systems 27. Curran Associates, Inc., Red Hook, pp 1988–1996

    Google Scholar 

  • Sun Y, Wang X, Tang X (2016) Hybrid deep learning for face verification. IEEE Trans Pattern Anal Mach Intell 38(10):1997–2009. https://doi.org/10.1109/TPAMI.2015.2505293

    Article  Google Scholar 

  • Taigman Y, Yang M, Ranzato M, Wolf L (2014) DeepFace: closing the gap to human-level performance in face verification. In: IEEE conference on computer vision and pattern recognition, pp 1701–1708

  • Tan X, Chen S, Zhou ZH, Zhang F (2006) Face recognition from a single image per person: a survey. Pattern Recognit. 39(9):1725–1745

    MATH  Google Scholar 

  • Thomaz CE, Giraldi GA (2010) A new ranking method for principal components analysis and its application to face image analysis. Image Vis Comput 28(6):902–913. https://doi.org/10.1016/j.imavis.2009.11.005

    Article  Google Scholar 

  • Tran L, Yin X, Liu X (2017) Disentangled representation learning gan for pose-invariant face recognition. In: CVPR, vol 3, p 7

  • Trigeorgis G, Bousmalis K, Zafeiriou S, Schuller BW (2017) A deep matrix factorization method for learning attribute representations. IEEE Trans Pattern Anal Mach Intell 39(3):417–429. https://doi.org/10.1109/TPAMI.2016.2554555

    Article  Google Scholar 

  • Troje NF, Bülthoff H (1996) Face recognition under varying poses: the role of texture and shape. Vis Res 36(12):1761–1771. https://doi.org/10.1016/0042-6989(95)00230-8

    Article  Google Scholar 

  • Turk M, Pentland A (1991) Face recognition using eigenfaces. J Cognit Neurosci (JCN) 3(1):71–89

    Google Scholar 

  • Uddin MZ, Khaksar W, Torresen J (2017) Facial expression recognition using salient features and convolutional neural network. IEEE Access 5:26146–26161. https://doi.org/10.1109/ACCESS.2017.2777003

    Article  Google Scholar 

  • Wang W, Cui Z, Chang H, Shan S, Chen X (2014) Deeply coupled auto-encoder networks for cross-view classification. CORR, pp 1–11

  • Wang D, Otto C, Jain AK (2017a) Face search at scale. IEEE Trans Pattern Anal Mach Intell 39(6):1122–1136. https://doi.org/10.1109/TPAMI.2016.2582166

    Article  Google Scholar 

  • Wang K, Zhang D, Li Y, Zhang R, Lin L (2017b) Cost-effective active learning for deep image classification. IEEE Trans Circuits Syst Video Technol 27(12):2591–2600. https://doi.org/10.1109/TCSVT.2016.2589879

    Article  Google Scholar 

  • Wang Q, Guo G, Nouyed MI (2017c) Learning channel inter-dependencies at multiple scales on dense networks for face recognition. CoRR arXiv:1711.10103

  • Wan L, Liu N, Huo H, Fang T (2017) Face recognition with convolutional neural networks and subspace learning. In: 2017 2nd international conference on image, vision and computing (ICIVC), pp 228–233. https://doi.org/10.1109/ICIVC.2017.7984551

  • Weng R, Lu J, Hu J, Yang G, Tan Y (2013) Robust feature set matching for partial face recognition. IEEE international conference on computer vision, pp 601–608

  • Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition. In: European conference on computer vision. Springer, pp 499–515

  • Weyrauch B, Heisele B, Huang J, Blanz V (2004) Component-based face recognition with 3d morphable models. In: Conference on computer vision and pattern recognition workshop, 2004. CVPRW’04. IEEE, pp 85–85

  • Wiskott L, Fellous J (1997) Face recognition by elastic bunch graph matching. IEEE Trans Pattern Anal Mach Learn 19(7):775–779

    Google Scholar 

  • Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Google Scholar 

  • Wright J, Hua G (2009) Implicit elastic matching with random projections for pose-variant face recognition. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009. IEEE, pp 1502–1509

  • Wu B, Ai H, Huang C, Lao S (2004) Fast rotation invariant multi-view face detection based on real adaboost. In: Sixth IEEE international conference on automatic face and gesture recognition, 2004. Proceedings. IEEE, pp 79–84

  • Xu X, Le HA, Dou P, Wu Y, Kakadiaris IA (2017) Evaluation of a 3d-aided pose invariant 2d face recognition system. In: 2017 IEEE international joint conference on biometrics (IJCB). IEEE, pp 446–455

  • Xu C, Wang Y, Tan T, Quan L (2004) Automatic 3d face recognition combining global geometric features with local shape variation information. In: Sixth IEEE international conference on automatic face and gesture recognition, 2004. Proceedings. IEEE, pp 308–313

  • Yang MH (2002) Kernel eigenfaces vs. kernel fisherfaces: face recognition using kernel methods. In: Fgr, vol 2, p 215

  • Yang B, Cao J, Ni R, Zhang Y (2017) Facial expression recognition using weighted mixture deep neural network based on double-channel facial images. IEEE Access PP(99):1. https://doi.org/10.1109/ACCESS.2017.2784096

    Article  Google Scholar 

  • Yuille A, Hallinan P, Cohen D (1992) Feature extraction from faces using deformable templates. Int J Comput Vis (IJCV) 8(2):99–111

    Google Scholar 

  • Zhang W, Shacn S, Gao W, Chen X, Zhang H (2005) Local gabor binary pattern histogram sequence (lgbphs): a novel non-statistical model for face representation and recognition. In: Tenth IEEE international conference on computer vision, 2005. ICCV 2005. IEEE, vol 1, pp 786–791

  • Zhang Y, Shao M, Wong E, Fu Y (2013) Random faces guided sparse many-to-one encoder for pose-invariant face recognition. In: IEEE international conference on computer vision, pp 2416–2423

  • Zhang K, Zhang Z, Li Z, Qiao Y (2016a) Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process Lett 23(10):1499–1503. https://doi.org/10.1109/LSP.2016.2603342

    Article  Google Scholar 

  • Zhang T, Zheng W, Cui Z, Zong Y, Yan J, Yan K (2016b) A deep neural network-driven feature learning method for multi-view facial expression recognition. IEEE Trans Multimed 18(12):2528–2536. https://doi.org/10.1109/TMM.2016.2598092

    Article  Google Scholar 

  • Zhang Z, Luo P, Loy CC, Tang X (2016c) Learning deep representation for face alignment with auxiliary attributes. IEEE Trans Pattern Anal Mach Intell 38(5):918–930. https://doi.org/10.1109/TPAMI.2015.2469286

    Article  Google Scholar 

  • Zhang S, He R, Sun Z, Tan T (2018) Demeshnet: blind face inpainting for deep meshface verification. IEEE Trans Inf Forensics Secur 13(3):637–647. https://doi.org/10.1109/TIFS.2017.2763119

    Article  Google Scholar 

  • Zhao S, Gao Y (2009) Textural Hausdorff distance for wider-range tolerance to pose variation and misalignment in 2D face recognition. In: 2009 IEEE conference on computer vision and pattern recognition (CVPR), pp 1629–1634

  • Zhao W, Krishnaswamy A, Challeppa R, Swets D, Weng J (1998) Discriminant analysis of principal components for face recognition. In: Proceedings 3rd IEEE international conference on automatic face and gesture recognition, pp 336–341

  • Zhao J, Han J, Shao L (2017) Unconstrained face recognition using a set-to-set distance measure on deep learned features. IEEE Trans Circuits Syst Video Technol PP(99):1. https://doi.org/10.1109/TCSVT.2017.2710120

    Article  Google Scholar 

  • Zhu Z, Luo P, Wang X, Tang X (2013) Deep learning identity-preserving face space. In: IEEE international conference on computer vision (ICCV), pp 113–120

  • Zhu Z, Luo P, Wang X, Tang X (2014) Recover canonical-view faces in the wild with deep neural networks. CORR, pp 1–10

  • Zhu X, Lei Z, Yan J, Yi D, Li SZ (2015) High-fidelity pose and expression normalization for face recognition in the wild. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 787–796. https://doi.org/10.1109/CVPR.2015.7298679

  • Zhu X, Lei Z, Liu X, Shi H, Li S (2016) Face alignment across large poses: a 3D solution. In: IEEE conference of computer vision and pattern recognition (CVPR), pp 146–155

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Farooq Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S.B., Ali, S.F., Ahmad, J. et al. On the frontiers of pose invariant face recognition: a review. Artif Intell Rev 53, 2571–2634 (2020). https://doi.org/10.1007/s10462-019-09742-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-019-09742-3

Keywords

Navigation