Skip to main content
Log in

Generalized Maclaurin symmetric mean aggregation operators based on Archimedean t-norm of the intuitionistic fuzzy soft set information

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Intuitionistic fuzzy soft set (IFSS) accommodates more uncertainties within the information by considering the parameterization feature than the intuitionistic fuzzy sets and hence its applications are more extensive. Archimedean T-conorm and T-norm (ATT), consists of T-norm and T-conorm classes, is as an essential source to make the comprehensive operational laws. Meanwhile, the Maclaurin symmetric mean (MSM) has a prominent characteristic and the advantage that it can take into account the interrelation between multi-input arguments, including different attributes or different experts. Motivated by these chief characteristics, in this article, we extend the MSM operators to the IFSS based on ATT. In this paper, a method is exploited to solve the multi-criteria decision-making (MCDM) problems under the IFSS environment. To it, firstly, some generalized intuitionistic fuzzy soft operational laws are introduced based on ATT. Secondly, we reveal some averaging and geometric aggregation operators based on MSM operator. Further, some desirable features and particular cases of it are tested and build up with a new technique for illustrating MCDM problems. Finally, an illustration is given to exhibit the methodology and approach’s supremacy is shown through a comparative study with prevailing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arora R, Garg H (2018a) Prioritized averaging/geometric aggregation operators under the intuitionistic fuzzy soft set environment. Sci Iran 25(1):466–482

    Google Scholar 

  • Arora R, Garg H (2018b) Robust aggregation operators for multi-criteria decision making with intuitionistic fuzzy soft set environment. Sci Iran E 25(2):931–942

    Google Scholar 

  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96

    MATH  Google Scholar 

  • Bora M, Neog TJ, Sut DK (2012) Some new operations of intuitionistic fuzzy soft sets. Int J Soft Comput Eng 2:2231–2307

    Google Scholar 

  • Cagman N, Deli I (2013) Similarity measures of intuitionistic fuzzy soft sets and their decision making. arXiv:1301.0456

  • Garg H (2019) Hesitant Pythagorean fuzzy Maclaurin symmetric mean operators and its applications to multiattribute decision making process. Int J Intell Syst 34(4):601–626

    Google Scholar 

  • Garg H (2020a) Linguistic interval-valued Pythagorean fuzzy sets and their application to multiple attribute group decision-making process. Cognit Comput. https://doi.org/10.1007/s12559-020-09750-4

    Article  Google Scholar 

  • Garg H (2020b) New ranking method for normal intuitionistic sets under crisp, interval environments and its applications to multiple attribute decision making process. Complex Intell Syst 6(3):559–571. https://doi.org/10.1007/s40747-020-00150-7

    Article  Google Scholar 

  • Garg H, Arora R (2018a) Bonferroni mean aggregation operators under intuitionistic fuzzy soft set environment and their applications to decision-making. J Oper Res Soc 69(11):1711–1724

    Google Scholar 

  • Garg H, Arora R (2018b) Generalized and group-based generalized intuitionistic fuzzy soft sets with applications in decision-making. Appl Intell 48(2):343–356

    Google Scholar 

  • Garg H, Arora R (2019) Generalized intuitionistic fuzzy soft power aggregation operator based on t-norm and their application in multi criteria decision-making. Int J Intell Syst 34(2):215–246

    Google Scholar 

  • Garg H, Arora R (2020a) Algorithms based on COPRAS and aggregation operators with new information measures for possibility intuitionistic fuzzy soft decision-making. Math Probl Eng 2020:1563768. https://doi.org/10.1155/2020/1563768

    Article  MathSciNet  Google Scholar 

  • Garg H, Arora R (2020b) Maclaurin symmetric mean aggregation operators based on t-norm operationsfor the dual hesitant fuzzy soft set. J Ambient Intell Humaniz Comput 11(1):375–410. https://doi.org/10.1007/s12652-019-01238-w

    Article  Google Scholar 

  • Garg H, Arora R (2020c) TOPSIS method based on correlation coefficient for solving decision-making problems with intuitionistic fuzzy soft set information. AIMS Math 5(4):2944–2966

    MathSciNet  Google Scholar 

  • Garg H, Kumar K (2019) Linguistic interval-valued Atanassov intuitionistic fuzzy sets and their applications to group decision-making problems. IEEE Trans Fuzzy Syst 27(12):2302–2311

    Google Scholar 

  • Gou XJ, Xu ZS (2017) Exponential operations for intuitionistic fuzzy numbers and interval numbers in multi-attribute decision making. Fuzzy Optim Decis Mak 16(2):183–204

    MathSciNet  MATH  Google Scholar 

  • Gou XJ, Xu ZS, Lei Q (2016a) New operational laws and aggregation method of intuitionistic fuzzy information. J Intell Fuzzy Syst 30:129–141

    MATH  Google Scholar 

  • Gou XJ, Xu ZS, Liao HC (2016b) Exponential operations of interval-valued intuitionistic fuzzy numbers. J Mach Learn Cybern 7(3):501–518

    Google Scholar 

  • Jiang Y, Tang Y, Liu H, Chen Z (2013) Entropy on intuitionistic fuzzy soft sets and on interval-valued fuzzy soft sets. Inf Sci 240:95–114

    MathSciNet  MATH  Google Scholar 

  • Jiang H, Zhan J, Chen D (2018) Covering based variable precision (I, T)-fuzzy rough sets with applications to multi-attribute decision-making. IEEE Trans Fuzzy Syst https://doi.org/10.1109/TFUZZ.2018.2883023

    Article  Google Scholar 

  • Kaur G, Garg H (2018) Multi-attribute decision-making based on Bonferroni mean operators under cubic intuitionistic fuzzy set environment. Entropy 20(1):65. https://doi.org/10.3390/e20010065

    Article  MathSciNet  Google Scholar 

  • Kaur G, Garg H (2019) Generalized cubic intuitionistic fuzzy aggregation operators using t-norm operations and their applications to group decision-making process. Arab J Sci Eng 44(3):2775–2794

    Google Scholar 

  • Khalid A, Abbas M (2015) Distance measures and operations in intuitionistic and interval-valued intuitionistic fuzzy soft set theory. Int J Fuzzy Syst 17(3):490–497

    MathSciNet  Google Scholar 

  • Klir GJ, Yuan B (2005) Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall of India Private Limited, New Delhi

    MATH  Google Scholar 

  • Liu P, Qin X (2017) Maclaurin symmetric mean operators of linguistic intuitionistic fuzzy numbers and their application to multiple-attribute decision-making. J Exp Theor Artif Intell 29(6):1173–122

    Google Scholar 

  • Maclaurin C (1729) A second letter to martin folkes, esq; concerning the roots of equations, with demonstration of other rules of algebra. Philos Trans R Soc Lond Ser A 36:59–96

    Google Scholar 

  • Maji PK, Biswas R, Roy A (2001a) Intuitionistic fuzzy soft sets. J Fuzzy Math 9(3):677–692

    MathSciNet  MATH  Google Scholar 

  • Maji PK, Biswas R, Roy AR (2001b) Fuzzy soft sets. J Fuzzy Math 9(3):589–602

    Google Scholar 

  • Molodtsov D (1999) Soft set theory-first results. Comput Math Appl 27(4–5):19–31

    MathSciNet  MATH  Google Scholar 

  • Muthukumar P, Krishnan GSS (2016) A similarity measure of intuitionistic fuzzy soft sets and its application in medical diagnosis. Appl Soft Comput 41:148–156

    Google Scholar 

  • Qin J, Liu X (2014) An approach to intuitionistic fuzzy multiple attribute decision making based on Maclaurin symmetric mean operators. J Intell Fuzzy Syst 27(5):2177–2190

    MathSciNet  MATH  Google Scholar 

  • Qin J, Liu X (2015) Approaches to uncertain linguistic multiple attribute decision making based on dual Maclaurin symmetric mean. J Intell Fuzzy Syst 29(1):171–186

    MathSciNet  MATH  Google Scholar 

  • Rajarajeswari P, Dhanalakshmi P (2014) Similarity measures of intuitionistic fuzzy soft sets and its application in medical diagnosis. Int J Math Arch 5(5):143–149

    MATH  Google Scholar 

  • Sarala N, Suganya B (2016) An application of similarity measure of intuitionistic fuzzy soft set based on distance in medical diagnosis. Int J Sci Res 4:2298–2303

    Google Scholar 

  • Selvachandran G, Maji P, Faisal RQ, Salleh AR (2017) Distance and distance induced intuitionistic entropy of generalized intuitionistic fuzzy soft sets. Appl Intell 47(1):132–147

    Google Scholar 

  • Wei G, Garg H, Gao H, Wei C (2018) Interval-valued pythagorean fuzzy Maclaurin symmetric mean operators in multiple attribute decision making. IEEE Access 6(1):67866–67884

    Google Scholar 

  • Wei GW (2010) Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making. Appl Soft Comput 10:423–431

    Google Scholar 

  • Wu Q, Wang F, Zhou L, Chen H (2017) Method of multiple attribute group decision making based on 2-dimension interval type-2 fuzzy aggregation operators with multi-granularity linguistic information. Int J Fuzzy Syst 19(6):1880–1903

    MathSciNet  Google Scholar 

  • Wu Q, Wu P, Zhou L, Chen H, Guan X (2018) Some new hamacher aggregation operators under single-valued neutrosophic 2-tuple linguistic environment and their applications to multi-attribute group decision making. Comput Ind Eng 116:144–162

    Google Scholar 

  • Wu Q, Lin W, Zhou L, Chen Y, Chen H (2019) Enhancing multiple attribute group decision making flexibility based on information fusion technique and hesitant pythagorean fuzzy sets. Comput Ind Eng 127:954–970

    Google Scholar 

  • Xia MM, Xu ZS, Zhu B (2012) Some issues on intuitionistic fuzzy aggregation operators based on archimedean t-conorm and t-norm. Knowl Based Syst 31:78–88

    Google Scholar 

  • Xiao P, Wu Q, Li H, Zhou L, Tao Z, Liu J (2019) Novel hesitant fuzzy linguistic multi-attribute group decision making method based on improved supplementary regulation and operational laws. IEEE Access 7:32922–32940

    Google Scholar 

  • Xu ZS (2007) Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst 15:1179–1187

    Google Scholar 

  • Xu ZS, Yager RR (2006) Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst 35:417–433

    MathSciNet  MATH  Google Scholar 

  • Xu ZS, Yager RR (2011) Intuitionistic fuzzy Bonferroni means. IEEE Trans Syst Man Cybern 41(2):568–578

    Google Scholar 

  • Xue Y, Deng Y, Garg H (2021) Uncertain database retrieval with measure-based belief function attribute values under intuitionistic fuzzy set. Inf Sci 546:436–447

    MathSciNet  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    MATH  Google Scholar 

  • Zhan J, Alcantud JCR (2018a) A novel type of soft rough covering and its application to multicriteria group decision making. Artif Intell Rev. https://doi.org/10.1007/s10462-018-9617-3

    Article  Google Scholar 

  • Zhan J, Alcantud JCR (2018b) A survey of parameter reduction of soft sets and corresponding algorithms. Artif Intell Rev. https://doi.org/10.1007/s10462-017-9592-0

    Article  Google Scholar 

  • Zhan J, Sun B, Alcantud JCR (2019) Covering based multigranulation (I, T)-fuzzy rough set models and applications in multi-attribute group decision-making. Inf Sci 476:290–318

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Garg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs

Appendix: Proofs

Proof of Theorem 3:

Proof

For the sake of simplicity, we prove the result for the generator \(z(t)=-\log (t)\) and \(y(t)=z(1-t).\) Now, for \(z(t)=-\log (t),\) Eq. (7) becomes

$$\begin{aligned}&{\text {IFSMSMA}}^{(k,l)}({\mathcal {B}}_{11}, {\mathcal {B}}_{12},\dots , {\mathcal {B}}_{nm})\\&\quad = \left( \begin{aligned}&\left( 1-\prod \limits _{\begin{array}{c} 1\le j_{1}< \cdots \\< j_{l} \le m \end{array}}\left( 1-\prod \limits _{s=1}^{l}\left( 1-\prod \limits _{\begin{array}{c} 1\le i_{1}< \cdots \\< i_{k} \le n \end{array}}\left( 1-\prod \limits _{r=1}^{k} \zeta _{i_r j_s}\right) ^{\frac{1}{C_{n}^{k}}}\right) ^{\frac{1}{k}}\right) ^{\frac{1}{C_{m}^{l}}}\right) ^{\frac{1}{l}} , \\&1-\left( 1-\prod \limits _{\begin{array}{c} 1\le j_{1}< \cdots \\< j_{l} \le m \end{array}}\left( 1-\prod \limits _{s=1}^{l}\left( 1-\prod \limits _{\begin{array}{c} 1\le i_{1}< \cdots \\ < i_{k} \le n \end{array}}\left( 1-\prod \limits _{r=1}^{k} \left( 1-\vartheta _{i_r j_s}\right) \right) ^{\frac{1}{C_{n}^{k}}}\right) ^{\frac{1}{k}}\right) ^{\frac{1}{C_{m}^{l}}}\right) ^{\frac{1}{l}} \end{aligned} \right) \end{aligned}$$

Let

$$\begin{aligned} f(k,l)= & {} \left( 1-\prod \limits _{\begin{array}{c} 1\le j_{1}< \cdots \\< j_{l} \le m \end{array}}\left( 1-\prod \limits _{s=1}^{l}\left( 1-\prod \limits _{\begin{array}{c} 1\le i_{1}< \cdots \\ < i_{k} \le n \end{array}}\left( 1-\prod \limits _{r=1}^{k} \zeta _{i_r j_s}\right) ^{\frac{1}{C_{n}^{k}}}\right) ^{\frac{1}{k}}\right) ^{\frac{1}{C_{m}^{l}}}\right) ^{\frac{1}{l}} \end{aligned}$$
(22)

and

$$\begin{aligned} g(k,l)= & {} 1-\left( 1-\prod \limits _{\begin{array}{c} 1\le j_{1}< \cdots \\< j_{l} \le m \end{array}}\left( 1-\prod \limits _{s=1}^{l}\left( 1-\prod \limits _{\begin{array}{c} 1\le i_{1}< \cdots \\ < i_{k} \le n \end{array}}\left( 1-\prod \limits _{r=1}^{k} \left( 1-\vartheta _{i_r j_s}\right) \right) ^{\frac{1}{C_{n}^{k}}}\right) ^{\frac{1}{k}}\right) ^{\frac{1}{C_{m}^{l}}}\right) ^{\frac{1}{l}} \end{aligned}$$
(23)

Now, we will prove function f(kl) is monotonically diminishing w.r.t. kl. Since by using Lemma 1, we can get

$$\begin{aligned} f(k,l)= & {} \left( 1-\prod \limits _{\begin{array}{c} 1\le j_{1}< \cdots \\< j_{l} \le m \end{array}}\left( 1-\prod \limits _{s=1}^{l}\left( 1-\prod \limits _{\begin{array}{c} 1\le i_{1}< \cdots \\< i_{k} \le n \end{array}}\left( 1-\prod \limits _{r=1}^{k} \zeta _{i_r j_s}\right) ^{\frac{1}{C_{n}^{k}}}\right) ^{\frac{1}{k}}\right) ^{\frac{1}{C_{m}^{l}}}\right) ^{\frac{1}{l}} \\\ge & {} \left( 1-\prod \limits _{\begin{array}{c} 1\le j_{1}< \cdots \\< j_{l} \le m \end{array}}\left( 1-\prod \limits _{s=1}^{l}\left( 1-\sum \limits _{\begin{array}{c} 1\le i_{1}< \cdots \\< i_{k} \le n \end{array}}{\frac{1}{C_{n}^{k}}}1-\prod \limits _{r=1}^{k} \zeta _{i_r j_s}\right) ^{\frac{1}{k}}\right) ^{\frac{1}{C_{m}^{l}}}\right) ^{\frac{1}{l}} \\= & {} \left( 1-\prod \limits _{\begin{array}{c} 1\le j_{1}< \cdots \\< j_{l} \le m \end{array}}\left( 1-\prod \limits _{s=1}^{l}\left( \sum \limits _{\begin{array}{c} 1\le i_{1}< \cdots \\ < i_{k} \le n \end{array}}{\frac{1}{C_{n}^{k}}}\left( \prod \limits _{r=1}^{k} \zeta _{i_r j_s}\right) \right) ^{\frac{1}{k}}\right) ^{\frac{1}{C_{m}^{l}}}\right) ^{\frac{1}{l}} \end{aligned}$$
(24)

We proof the result by taking the contraction method. Assume that the f(kl) is monotonically increasing w.r.t. the parameter k,  then we get

$$\begin{aligned} f(n,l)> f(n-1, l)> \cdots > f(1,l) \end{aligned}$$
(25)

But from Eq. (24), we have

$$\begin{aligned} f(1, l)\ge & {} \left( 1-\prod \limits _{\begin{array}{c} 1\le j_{1}< \cdots \\< j_{l} \le m \end{array}}\left( 1-\prod \limits _{s=1}^{l}\left( \sum \limits _{1\le i_{1} \le n}{\frac{1}{C_{n}^{1}}}\prod \limits _{r=1}^{1} \zeta _{i_r j_s}\right) ^{\frac{1}{1}}\right) ^{\frac{1}{C_{m}^{l}}}\right) ^{\frac{1}{l}} \\= & {} \left( 1-\prod \limits _{\begin{array}{c} 1\le j_{1}< \cdots \\ < j_{l} \le m \end{array}}\left( 1-\prod \limits _{s=1}^{l}\left( \sum \limits _{1\le i_{1} \le n}{\frac{1}{n}} \zeta _{i_1 j_s}\right) \right) ^{\frac{1}{C_{m}^{l}}}\right) ^{\frac{1}{l}} \end{aligned}$$
(26)

Also from Eq. (22), we have

$$\begin{aligned} f(n,l)= \left( 1-\prod \limits _{\begin{array}{c} 1\le j_{1}< \cdots \\ < j_{l} \le m \end{array}}\left( 1-\prod \limits _{s=1}^{l}\left( \prod \limits _{i=1}^{n} \zeta _{i_r j_s}\right) ^{\frac{1}{n}}\right) ^{\frac{1}{C_{m}^{l}}}\right) ^{\frac{1}{l}} \end{aligned}$$
(27)

By using Eqns. (25), (26) and (27), we get

$$\begin{aligned}&\left( 1-\prod \limits _{\begin{array}{c} 1\le j_{1}< \cdots \\< j_{l} \le m \end{array}}\left( 1-\prod \limits _{s=1}^{l}\left( \prod \limits _{i=1}^{n} \zeta _{i_r j_s}\right) ^{\frac{1}{n}}\right) ^{\frac{1}{C_{m}^{l}}}\right) ^{\frac{1}{l}} \ge \left( 1-\prod \limits _{\begin{array}{c} 1\le j_{1}< \cdots \\< j_{l} \le m \end{array}}\left( 1-\prod \limits _{s=1}^{l}\left( \sum \limits _{1\le i_{1} \le n}{\frac{1}{n}} \zeta _{i_1 j_s}\right) \right) ^{\frac{1}{C_{m}^{l}}}\right) ^{\frac{1}{l}} \\&\quad \Leftrightarrow \prod \limits _{\begin{array}{c} 1\le j_{1}< \cdots \\< j_{l} \le m \end{array}}\left( 1-\prod \limits _{s=1}^{l}\left( \prod \limits _{i=1}^{n} \zeta _{i_r j_s}\right) ^{\frac{1}{n}}\right) ^{\frac{1}{C_{m}^{l}}} \le \prod \limits _{\begin{array}{c} 1\le j_{1}< \cdots \\ < j_{l} \le m \end{array}}\left( 1-\prod \limits _{s=1}^{l}\left( \sum \limits _{1\le i_{1} \le n}{\frac{1}{n}} \zeta _{i_1 j_s}\right) \right) ^{\frac{1}{C_{m}^{l}}} \\&\quad \Leftrightarrow \prod \limits _{s=1}^{l}\left( \prod \limits _{i=1}^{n} \zeta _{i_r j_s}\right) ^{\frac{1}{n}} \ge \prod \limits _{s=1}^{l}\left( \sum \limits _{1\le i_{1} \le n}{\frac{1}{n}} \zeta _{i_1 j_s}\right) \\&\quad \Leftrightarrow \left( \prod \limits _{i=1}^{n} \zeta _{i_r j_s}\right) ^{\frac{1}{n}} \ge \sum \limits _{1\le i_{1} \le n}{\frac{1}{n}} \zeta _{i_1 j_s} \end{aligned}$$

Clearly it contradict the inequality given in Lemma 1. Hence, the function f(kl) is monotonically decreasing w.r.t. the parameter k. Similarly, f(kl) is monotonically decreasing w.r.t. parameter l and the function g(kl) is monotonically increasing w.r.t. the parameters kl. Thus, by applying the definition of score function, we have

$$\begin{aligned} {\text {Sc}}(k,l)=f(k,l)-g(k,l) \end{aligned}$$
(28)

For any value of \(k \in [1,n]\) and \(k\in {\mathbb {Z}},\) we can obtain

$$\begin{aligned} {\text {Sc}}(k+1,l)-{\text {Sc}}(k,l)&= \left( f(k+1,l)-g(k+1,l)\right) -\left( f(k,l)-g(k,l)\right) \\&= \left( f(k+1,l)-f(k,l)\right) -\left( g(k+1,l)-g(k,l)\right) \end{aligned}$$

Since f(kl) is monotonically decreasing and g(kl) is monotonically increasing w.r.t. k,  therefore, we have \(f(k+1,l)-f(k,l)<0\) and \(g(k+1,l)-g(k,l)> 0.\) This implies \({\text {Sc}}(k+1,l)-{\text {Sc}}(k,l)< 0,\) i.e. for all \(k, {\text {Sc}}(k+1,l)<{\text {Sc}}(k,l).\) Thus the IFSMSMA operator is monotonically decreasing w.r.t. parameter k. Similarly, we can prove IFSMSMA operator is monotonically decreasing w.r.t. parameter l. Hence the result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, H., Arora, R. Generalized Maclaurin symmetric mean aggregation operators based on Archimedean t-norm of the intuitionistic fuzzy soft set information. Artif Intell Rev 54, 3173–3213 (2021). https://doi.org/10.1007/s10462-020-09925-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-020-09925-3

Keywords

Navigation