Skip to main content
Log in

A formal mathematical framework for modeling probabilistic hybrid systems

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

The development of autonomous agents, such as mobile robots and software agents, has generated considerable research in recent years. Robotic systems, which are usually built from a mixture of continuous (analog) and discrete (digital) components, are often referred to as hybrid dynamical systems. Traditional approaches to real-time hybrid systems usually define behaviors purely in terms of determinism or sometimes non-determinism. However, this is insufficient as real-time dynamical systems very often exhibit uncertain behavior. To address this issue, we develop a semantic model, Probabilistic Constraint Nets (PCN), for probabilistic hybrid systems. PCN captures the most general structure of dynamic systems, allowing systems with discrete and continuous time/variables, synchronous as well as asynchronous event structures and uncertain dynamics to be modeled in a unitary framework. Based on a formal mathematical paradigm exploiting abstract algebra, topology and measure theory, PCN provides a rigorous formal programming semantics for the design of hybrid real-time embedded systems exhibiting uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y., Mackworth, A.K.: Constraint nets: a semantic model for hybrid systems. Theor. Comput. Sci. 138(1), 211–239 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Zhang, Y., Mackworth, A.K.: Modeling and analysis of hybrid control systems: An elevator case study. In: Levesque, H., Pirri, F., (eds.) Logical Foundations for Cognitive Agents, pp. 370–396. Springer, Berlin Heidelberg New York (1999)

    Google Scholar 

  3. Barringer, H.: Up and down the temporal way. Tech. rep., Computer Science, University of Manchester, England (September 1985)

  4. Dyck, D., Caines, P.: The logical control of an elevator. IEEE Trans. Automat. Contr. 3, 480–486 (March 1995)

    Article  MathSciNet  Google Scholar 

  5. Sanden, B.: An entity-life modeling approach to the design of concurrent software. Commun. ACM 32, 230–243 (March 1989)

    Google Scholar 

  6. St-Aubin, R.: Probabilistic Constraint Nets: A Framework for the Modeling and Verification of Probabilistic Hybrid Systems. PhD thesis, University of British Columbia, Department of Computer Science, www.cs.ubc.ca/spider/staubin/Papers/StAubin.pdf (June 2005)

  7. St-Aubin, R., Mackworth, A.K.: Modeling uncertain dynamical systems and solving behavioural constraints using probabilistic constraint nets. In: ECAI: Workshop on Modeling and Solving Problems with Constraints, pp. 70–85, Valencia, Spain (August 2004)

  8. Gemignani, M.C.: Elementary Topology. Addison-Wesley, Reading, MA (1967)

    MATH  Google Scholar 

  9. Hennessy, M.: Algebraic Theory of Processes. MIT, Cambridge, MA (1988)

    MATH  Google Scholar 

  10. Vickers, S.: Topology via Logic. Cambridge University Press, Cambridge, UK (1989)

    MATH  Google Scholar 

  11. Manes, E.G., Arbib, M.A.: Algebraic Approaches to Program Semantics. Springer, Berlin Heidelberg New York (1986)

    MATH  Google Scholar 

  12. Warga, J.: Optimal Control of Differential and Functional Equations. Academic Press, New York (1972)

    MATH  Google Scholar 

  13. Royden, H.L.: Real Analysis, 3rd edn. Macmillan, New York (1988)

    MATH  Google Scholar 

  14. Billingsley, P.: Probability and Measure, Wiley series in probability and mathematical statistics. Wiley, New York (1986)

    Google Scholar 

  15. Breiman, L.: Probability. Addison-Wesley, Reading, MA (1968)

    MATH  Google Scholar 

  16. Williams, D.: Probability with Martingales. Cambridge Mathematical Textbooks, Cambridge (1991)

    MATH  Google Scholar 

  17. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  18. Bratley, P., Fox, B., Schrage, L.: A guide to simulation, 2nd edn. Springer, Berlin Heidelberg New York (1987)

    Google Scholar 

  19. Gentle, J.: Random number generation and Monte Carlo methods. Springer, Berlin Heidelberg New York (1998)

    MATH  Google Scholar 

  20. Law, A., Kelton, W.: Simulation Modeling and Analysis, 3rd edn. McGRaw-Hill, New York (2000)

    Google Scholar 

  21. L’Ecuyer, P.: Handbook of Simulation, ch. 4: Random Number Generation, pp. 93–137. Wiley, New York (1998)

    Google Scholar 

  22. St-Aubin, R., Mackworth, A.K.: Constraint-based approach to modeling and verification of probabilistic hybrid systems. Tech. rep. TR-2004-05, University of British Columbia, www.cs.ubc.ca/spider/staubin/Papers/TR-04-05.pdf (April 2004)

  23. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice -Hall, Englewood Cliffs, NJ (1981)

    Google Scholar 

  24. Jensen, K.: Coloured petri nets and the invariant-method. Theor. Comp. Sci. 14, 317–336 (1981)

    Article  MATH  Google Scholar 

  25. Maruyama, G.: Continuous markov processes and stochastic equations. Rend. Circ. Mat. Palermo 4, 48–90 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zames, G.: Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Trans. Automat. Contr. 26, 301–320 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  27. Petersen, I.R., Ugrinovskii, V.A., Savkin, A.V.: Robust Control Design Using H Methods. Springer, Berlin Heidelberg New York (2000)

    MATH  Google Scholar 

  28. Richter, S., Hodel, A., Pruett, P.: Homotopy methods for the solution of general modified riccati equations. IEE. Proceedings.-D, Control Theory Appl. 160(6), 449–454 (1993)

    Article  Google Scholar 

  29. Ugrinovskii, V.A.: Robust H control in the presence of stochastic uncertainty. Int. J. Control 71(2), 219–237 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Damm, T., Hinrichsen, D.: Newton’s method for a rational matrix equation occurring in stochastic control. Linear Algebra Appl. 332/334, pp. 81–109 (2001)

    Article  MathSciNet  Google Scholar 

  31. Wonham, W.: On a matrix Riccati equation of stochastic control. SIAM J. Control 6(4), 681–697 (1968)

    Article  MathSciNet  Google Scholar 

  32. Guo, C.-H.: Iterative solution of a matrix riccati equation arising in stochastic control. Oper. Theory Adv. Appl. 130, 209–221 (2001)

    Google Scholar 

  33. Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. Real-time: theory in practice in lecture notes in computer science, pp. 448–484 (1992)

  34. Nerode, A., Kohn, W.: Models for hybrid systems: Automata, topologies, controllability, observability. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) Hybrid Systems. Lecture Notes on Computer Science (736), pp. 317–356. Springer, Berlin Heidelberg New York (1993)

    Google Scholar 

  35. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (1994)

    MATH  Google Scholar 

  36. Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, UC Berkeley, Computer Science Division (July 2002)

  37. Hofbaur, M., Williams, B.: Hybrid estimation of complex systems. In: IEEE Transactions on Man and Cybernetics, Part B: Cybern. 34(5), 2178–2191 (2004)

  38. Stanislav Funiak, L.J.B., Williams, B.C.: Gaussian particle filtering for concurrent hybrid models with autonomous transitions. J. Artif. Intell. Res. (2007)

  39. Beetz, M., Grosskreutz, H.: Probabilistic hybrid action models for predicting concurrent percept-driven robot behavior. In: Artificial Intelligence Planning Systems, pp. 42–61 (2000)

  40. Tarksi, A.: A lattice theoretical fixpoint theorem and its applications. Pac. J. Math. 5, 285–309 (1955)

    Google Scholar 

  41. Cassela, G., Berger, R.: Statistical Inference. Wadsworth and Brooks/Cole, Belmont, California (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert St-Aubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

St-Aubin, R., Friedman, J. & Mackworth, A.K. A formal mathematical framework for modeling probabilistic hybrid systems. Ann Math Artif Intell 47, 397–425 (2006). https://doi.org/10.1007/s10472-006-9035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-006-9035-0

Keywords

Mathematics Subject Classifications (2000)

Navigation