Skip to main content
Log in

Arity and alternation: a proper hierarchy in higher order logics

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We study the effect of simultaneously bounding the maximal-arity of the higher-order variables and the alternation of quantifiers in higher-order logics, as to their expressive power on finite structures (or relational databases). Let \(\mathit{AA}^i(r,m)\) be the class of (i + 1)-th order logic formulae where all quantifiers are grouped together at the beginning of the formulae, forming m alternating blocks of consecutive existential and universal quantifiers, and such that the maximal-arity (a generalization of the concept of arity, not just the maximal of the arities of the quantified variables) of the higher-order variables is bounded by r. Note that, the order of the quantifiers in the prefix may be mixed. We show that, for every i ≥ 1, the resulting \(\mathit{AA}^i(r,m)\) hierarchy of formulae of (i + 1)-th order logic is proper. This extends a result by Makowsky and Pnueli who proved that the same hierarchy in second-order logic is proper. In both cases the strategy used to prove the results consists in considering formulae which, represented as finite structures, satisfy themselves. As the well known diagonalization argument applies here, this gives rise, for each order i and each level of the \(\mathit{AA}^i(r,m)\) hierarchy of arity and alternation, to a class of formulae which is not definable in that level, but which is definable in a higher level of the same hierarchy. We then use a similar argument to prove that the classes of \(\Sigma^i_m \cup \Pi^i_m\) formulae in which the higher-order variables of all orders up to i + 1 have maximal-arity at most r, also induce a proper hierarchy in each higher-order logic of order i ≥ 3. It is not known whether the correspondent hierarchy in second-order logic is proper. Using the concept of finite model truth definitions introduced by M. Mostowski, we give a sufficient condition for that to be the case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Redwood City, CA (1994)

    Google Scholar 

  2. Ajtai, M.: \(\Sigma^1_1\)-formulae on finite structures. Ann. Pure Appl. Logic 24, 1–48 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Log. Grundl. Math. 6, 66–92 (1960)

    MATH  Google Scholar 

  4. Chandra, A.K., Harel, D.: Computable queries for relational data bases. J. Comput. Syst. Sci. 21(2), 156–178 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ebbinghaus, H., Flum, J.: Finite model theory, 2nd edn. Springer, Berlin Heidelberg New York (1999)

    MATH  Google Scholar 

  6. Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Am. Math. Soc. 21, 89–96 (1961)

    MathSciNet  Google Scholar 

  7. Fagin, R.: A spectrum hierarchy. Z. Math. Log. Grundl. Math. 21, 123–134 (1975)

    MATH  MathSciNet  Google Scholar 

  8. Ferrarotti, F.A., Turull Torres, J.M.: Arity and alternation of quantifiers in higher order logics. Technical report number 10/2005. Department of Information Systems, Massey University, New Zealand (2005) http://infosys.massey.ac.nz/research/rs_techreports.html

  9. Ferrarotti, F.A., Turull Torres, J.M.: Arity and alternation: a proper hierarchy in higher order logics. Lect. Notes Comput. Sci. 3861, 92–115 (2006)

    Article  Google Scholar 

  10. Grohe, M.: Bounded arity hierarchies in fixed-point logics. In: Proceedings of the 7th Workshop on Computer Science Logic. Lecture Notes in Computer Science, vol. 832, pp. 150–164 (1993)

  11. Grohe, M.: Arity hierarchies. Ann. Pure Appl. Logic 82, 103–163 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grohe, M., Hella, L.: A double arity hierarchy theorem for transitive closure logic. Arch. Math. Log. 35, 157–171 (1996)

    MATH  MathSciNet  Google Scholar 

  13. Hella, L.: Definability hierarchies of generalized quantifiers. Ann. Pure Appl. Logic 43, 235–271 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hella, L.: Logic hierarchies in PTIME. In: Poceedings of the 7th IEEE Symposium in Logic and Computer Science, pp. 360–368 (1992)

  15. Hella, L., Turull Torres, J.M.: Expressibility of higher order logics. Electr. Notes Theor. Comput. Sci. 84 (2003)

  16. Hella, L., Turull Torres, J.M.: Computing queries with higher order logics. Theor. Comput. Sci. 355, 197–214 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hopcroft, J., Ullman, J.: Introduction to automata theory, languages and computation. Addison-Wesley, Redwood City, CA (1979)

    MATH  Google Scholar 

  18. Immerman, N.: Descriptive complexity. Springer, Berlin Heidelberg New York (1999)

    MATH  Google Scholar 

  19. Kolodziejczyk, L.A.: Truth definitions in finite models. J. Symb. Log. 69(1), 183–200 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kolodziejczyk, L.A.: A finite model-theoretical proof of a property of bounded query classes within PH. The J. Symb. Log. 69(4), 1105–1116 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kolodziejczyk, L.A.: Truth definitions and higher order logics in finite models. Ph.D. thesis, Warsaw University, Warsaw, Poland (2005)

  22. Leivant, D.: Higher order logic. In: Gabbay, D.M., et al. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 2, pp. 228–321. Oxford University Press, Oxford (1994)

    Google Scholar 

  23. Libkin, L.: Elements of finite model theory. Springer, Berlin Heidelberg New York (2004)

    MATH  Google Scholar 

  24. Makowsky, J.A., Pnueli, Y.B.: Arity and alternation in second-order logic. Ann. Pure Appl. Logic 78, 189–202 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Matz, O.: One existential quantifier will do in existential monadic second-order logic over pictures. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) Mathematical Foundations of Computer Science. Lecture Notes in Computer Science, vol. 1450, pp. 751–759 (1998)

  26. Matz, O., Schweikardt, N., Thomas, W.: The monadic quantifier alternation hierarchy over grids and graphs. Inf. Comput. 179, 356–383 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mostowski, M.: On representing concepts in finite models. Math. Log. Q. 47, 513–523 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mostowski, M.: On representing semantics in finite models. In: Rojszczak, A., Cachro, J., Kurczewski, G. (eds.) Philosophical Dimensions of Logic and Science, 11th International Congress of Logic, Methodology, and Philosophy of Science, Krakow, 1999, pp. 15–28, 1999. Kluwer, Deventer (2003)

  29. Otto, M.: Note on the number of monadic quantifiers in monadic \(\Sigma^1_1\). Inf. Process. Lett. 53, 337–339 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Stockmeyer, L.: The polynomial time hierarchy. Theor. Comput. Sci. 3(1), 1–22 (1976)

    Article  MathSciNet  Google Scholar 

  31. Tarski, A.: Poj̧cie prawdy w jȩzykach nauk dedukcyjnych. Warszawa, Nakładem Towarzystwa Naukowego Warszawskiego (1933) English translation of the German version: The concept of truth in formalized languages. Logic, semantics, metamathematics. Clarendon Press, Oxford, pp. 152–278 (1956)

  32. Thomas, W.: Classifying regular events in symbolic logic. J. Comput, Syst. Sci. 25, 360–376 (1982)

    Article  MATH  Google Scholar 

  33. Vardi, M.: The complexity of relational query languages. In: Proceedings of the 14th ACM Symposium on Theory of Computing, San Francisco, CA, USA, pp. 137–146 (1982)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Turull Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrarotti, F.A., Turull Torres, J.M. Arity and alternation: a proper hierarchy in higher order logics. Ann Math Artif Intell 50, 111–141 (2007). https://doi.org/10.1007/s10472-007-9071-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-007-9071-4

Keywords

Mathematics Subject Classifications (2000)

Navigation