Skip to main content
Log in

PAC-learning in the presence of one-sided classification noise

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We derive an upper and a lower bound on the sample size needed for PAC-learning a concept class in the presence of one-sided classification noise. The upper bound is achieved by the strategy “Minimum One-sided Disagreement”. It matches the lower bound (which holds for any learning strategy) up to a logarithmic factor. Although “Minimum One-sided Disagreement” often leads to NP-hard combinatorial problems, we show that it can be implemented quite efficiently for some simple concept classes like, for example, unions of intervals, axis-parallel rectangles, and TREE(2,n,2,k) which is a broad subclass of 2-level decision trees. For the first class, there is an easy algorithm with time bound O(m logm). For the second-one (resp. the third-one), we design an algorithm that applies the well-known UNION-FIND data structure and has an almost quadratic time bound (resp. time bound O(n 2 m logm)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, S.J.D.: Learning from ambiguous examples. Ph.D. thesis, Brown University (2007)

    Google Scholar 

  2. Angluin, D., Laird, P.: Learning from noisy examples. Mach. Learn. 2(4), 343–370 (1988)

    Google Scholar 

  3. Aronov, B., Garijo, D., Núñez-Rodríguez, Y., Rappaport, D., Seara, C., Urrutia, J.: Minimizing the error of linear separators on linearly inseparable data. Discrete Appl. Math. 160(10–11), 1441–1452 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Auer, P., Holte, R.C., Maass, W.: Theory and applications of agnostic PAC-learning with small decision trees. In: Proceedings of the 12th International Conference on Machine Learning, pp. 21–29 (1995)

  5. Auer, P., Long, P.M., Srinivasan, A.: Approximating hyper-rectangles: learning and pseudorandom sets. J. Comput. Syst. Sci. 57(3), 376–388 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blum, A., Kalai, A.: A note on learning from multiple-instance examples. Mach. Learn. 30(1), 23–29 (1998)

    Article  MATH  Google Scholar 

  7. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik–Chervonenkis dimension. J. Assoc. Comput. Mach. 36(4), 929–965 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge, MA (2009)

    MATH  Google Scholar 

  9. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1–2), 31–71 (1997)

    Article  MATH  Google Scholar 

  10. Diochnos, D.I., Sloan, R.H., Turan, G.: On multiple-instance learning of halfspaces. Inf. Process. Lett. 112(23), 933–936 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ehrenfeucht, A., Haussler, D., Kearns, M., Valiant, L.: A general lower bound on the number of examples needed for learning. Inf. Comput. 82(3), 247–261 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haussler, D.: Decision theoretic generalizations of the PAC model for neural net and other learning applications. Inf. Comput. 100(1), 78–150 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 11(1), 63–90 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kearns, M.: Efficient noise-tolerant learning from statistical queries. J. Assoc. Comput. Mach. 45(6), 983–1006 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kearns, M.J., Schapire, R.E., Sellie, L.: Toward efficient agnostic learning. Mach. Learn. 17(2), 115–141 (1994)

    MATH  Google Scholar 

  16. Laird, P.: Learning from Good and Bad Data. Kluwer Academic Publishers, Boston (1988)

    Book  MATH  Google Scholar 

  17. Maass, W.: Efficient agnostic pac-learning with simple hypotheses. In: Proceedings of the 7th Annual Conference on Computational Learning Theory, pp. 67–75 (1994)

  18. Maron, O., Ratan, A.L.: Multiple-instance learning for natural scene classification. In: Proceedings of the 15th International Conference on Machine Learning, pp. 341–349 (1998)

  19. Ramanan, P.: Obtaining lower bounds using artificial components. Inf. Process. Lett. 24(4), 243–246 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sabato, S., Tishby, N.: Multi-instance learning with any hypothesis class (2011). arXiv: 1107.2021v1 [cs.LG]

  21. Simon, H.U.: General bounds on the number of examples needed for learning probabilistic concepts. J. Comput. Syst. Sci. 52(2), 239–255 (1996)

    Article  MATH  Google Scholar 

  22. Steele, J.M., Yao, A.C.: Lower bounds for algebraic decision trees. J. Algorithms 3(1), 1–8 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

  24. Weiss, S.M., Galen, R.S., Tadepalli, P.: Maximizing the predictive value of production rules. Artif. Intell. 45(1–2), 47–71 (1990)

    Article  Google Scholar 

  25. Weiss, S.M., Kapouleas, I.: An empirical comparison of pattern recognition, neural nets, and machine learning classification methods. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence, pp. 781–787 (1989)

  26. Weiss, S.M., Kulikowski, C.: Computer Systems that Learn: Prediction Methods from Statistics, Neural Nets, Machine Learning and Expert Systems. Morgan Kaufmann, San Mateo, CA (1990)

    Google Scholar 

  27. Yao, A.: Probabilistic computations: toward a unified measure of complexity. In: Proceedings of the 18th Symposium on Foundations of Computer Science, pp. 222–227 (1977)

  28. Zhou, Z.H., Jiang, K., Li, M.: Multi-instance learning based web mining. Appl. Intell. 22(2), 135–147 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Ulrich Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, H.U. PAC-learning in the presence of one-sided classification noise. Ann Math Artif Intell 71, 283–300 (2014). https://doi.org/10.1007/s10472-012-9325-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-012-9325-7

Keywords

Mathematics Subject Classification (2010)

Navigation