Skip to main content
Log in

Generalized hyper-heuristics for solving 2D Regular and Irregular Packing Problems

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The idea behind hyper-heuristics is to discover some combination of straightforward heuristics to solve a wide range of problems. To be worthwhile, such a combination should outperform the single heuristics. This article presents a GA-based method that produces general hyper-heuristics that solve two-dimensional regular (rectangular) and irregular (convex polygonal) bin-packing problems. A hyper-heuristic is used to define a high-level heuristic that controls low-level heuristics. The hyper-heuristic should decide when and where to apply each single low-level heuristic, depending on the given problem state. In this investigation two kinds of heuristics were considered: for selecting the figures (pieces) and objects (bins), and for placing the figures into the objects. Some of the heuristics were taken from the literature, others were adapted, and some other variations developed by us. We chose the most representative heuristics of their type, considering their individual performance in various studies and also in an initial experimentation on a collection of benchmark problems. The GA included in the proposed model uses a variable-length representation, which evolves combinations of condition-action rules producing hyper-heuristics after going through a learning process which includes training and testing phases. Such hyper-heuristics, when tested with a large set of benchmark problems, produce outstanding results for most of the cases. The testbed is composed of problems used in other similar studies in the literature. Some additional instances for the testbed were randomly generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, R., Burke, E. K., & Kendall, G. (2008). Heuristic, meta-heuristic and hyper-heuristic approaches for fresh produce inventory control and shelf space allocation. Journal of the Operational Research Society (to appear).

  • Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998). Genetic programming: an introduction. London: Morgan Kaufmann.

    Google Scholar 

  • Beasley, J. E. (2003). Operations research library. Collection of problems for 2D packing and cutting. http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

  • Berkey, J. O., & Wang, P. Y. (1987). Two-dimensional finite bin packing algorithms. Journal of Operational Research Society, 38(5), 423–429.

    Google Scholar 

  • Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P., & Schulenburg, S. (2003a). Hyper-heuristics: an emerging direction in modern research technology. In Handbook of metaheuristics (pp. 457–474). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Burke, E. K., Kendall, G., & Soubeiga, E. (2003b). A tabu-search hyperheuistic for timetabling and rostering. Journal of Heuristics, 9(6), 451–470.

    Article  Google Scholar 

  • Burke, E. K., Hyde, M. R., & Kendall, G. (2006). Evolving bin packing heuristics with genetic programming. In 9th PPSN (pp. 860–869). Reykjavik. LNCS.

  • Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007). A graph-based hyperheuristic for timetabling problems. European Journal of the Operational Research, 176(1), 177–192.

    Article  Google Scholar 

  • Cheng, C. H., Fiering, B. R., & Chang, T. C. (1994). The cutting stock problem. A survey. International Journal of Production Economics, 36, 291–305.

    Article  Google Scholar 

  • Dowsland, K. A., Dowsland, W. B., & Bennell, J. A. (1998). Jostling for position: local improvement for irregular cutting patterns. Journal of the Operational Research Society, 49(6), 647–658.

    Google Scholar 

  • Dowsland, K. A., Vaid, S., & Dowsland, W. B. (2002). An algorithm for polygon placement using a bottom-left strategy. European Journal of Operational Research, 141(2), 371–381.

    Article  Google Scholar 

  • Dowsland, K., Herbert, E., Kendall, G., & Burke, E. (2006). Using the search bounds to enhance a genetic algorithms approach to two rectangle packing problems. European Journal of Operational Research, 168(2), 390–402.

    Article  Google Scholar 

  • Dowsland, K., Soubeiga, E., & Burke, E. K. (2007). A simulated annealing hyper-heuristic for determining shipper sizes. European Journal of the Operational Research, 179(3), 759–774.

    Article  Google Scholar 

  • Dyckhoff, H. (1990). A topology of cutting and packing problems. European Journal of Operational Research, 44, 145–159.

    Article  Google Scholar 

  • Fogel, D. B., Owens, L. A., & Walsh, M. (1966). Artificial intelligence through simulated evolution. New York: Wiley.

    Google Scholar 

  • Fujita, K., Akagji, S., & Kirokawa, N. (1993). Hybrid approach for optimal nesting using a genetic algorithm and a local minimisation algorithm. In Proceedings of the 19th annual ASME design automation conference, Part 1 (of 2) (Vol. 65, part 1, pp. 477–484). Albuquerque, NM, USA.

  • Garey, M., & Johnson, D. (1979). Computers and intractability. New York: W. H. Freeman.

    Google Scholar 

  • Goldberg, D. (1989). Genetic algorithms in search, optimization and machine learning. Reading: Addison-Wesley.

    Google Scholar 

  • Goldberg, D., Korb, B., & Deb, K. (1989). Messy genetic algorithms: Motivation, analysis and first results. Complex Systems, 3, 493–530.

    Google Scholar 

  • Golden, B. L. (1976). Approaches to the cutting stock problem. AIIE Transactions, 8, 256–274.

    Google Scholar 

  • Hifi, M., & MHallah, R. (2002). A best-local position procedure-based heuristic for two-dimensional layout problems. Studia Informatica Universalis, International Journal on Informatics, 2(1), 33–56.

    Google Scholar 

  • Hifi, M., & MHallah, R. (2003). A hybrid algorithm for the two-dimensional layout problem: the cases of regular and irregular shapes. International Transactions in Operational Research, 10, 195–216.

    Article  Google Scholar 

  • Holland, J. (1975). Adaptation in natural and artificial systems. Ann Arbor: The University of Michigan Press.

    Google Scholar 

  • Hopper, E., & Turton, B. C. (2001a). An empirical investigation of metaheuristic and heuristic algorithms for a 2D packing problem. European Journal of Operational Research, 128(1), 34–57.

    Article  Google Scholar 

  • Hopper, E., & Turton, B. C. (2001b). An empirical study of meta-heuristics applied to 2D rectangular bin packing. Studia Informatica Universalis, 2(1), 77–106.

    Google Scholar 

  • Jakobs, S. (1996). On genetic algorithms for the packing of polygons. European Journal of Operations Research, 88, 165–181.

    Article  Google Scholar 

  • Kantorovich, L. V. (1960). Mathematical methods of organizing and planning production. Management Science, 6, 366–422.

    Article  Google Scholar 

  • Kendall, G., Soubeiga, E., & Cowling, P. (2004). Choice function and random hyperheuristics. In N. Press (Ed.), 4th Asia-Pacific conference on simulated evolution and learning (pp. 667–671). Nanyang.

  • Kröger, B. (1995). Guillotineable bin packing: A genetic approach. European Journal of Operational Research, 84(2), 645–661.

    Article  Google Scholar 

  • Liu, D., & Teng, H. (1999). An improved BL-algorithm for genetic algorithm of the orthogonal packing of rectangle. European Journal of Operations Research, 112, 413–419.

    Article  Google Scholar 

  • Marín-Blázquez, J. G., & Schulenburg, S. (2007). A hyper-heuristic framework for XCS: learning to create novel problem-solving algorithms constructed from simpler algorithmic ingredients. In P. L. Lanzi, W. Stolzmann, & S. W. Wilson (Eds.), Learning classifier systems (pp. 193–218). Berlin: Springer.

    Chapter  Google Scholar 

  • Martello, S., & Vigo, D. (1998). Exact solution of the two-dimensional finite bin packing problem. Management Science, 44(3), 388–399.

    Article  Google Scholar 

  • Poli, R., Woodward, J., & Burke, E. K. (2007). A histogram-matching approach to the evolution of bin packing strategies. In Proceedings of congress on evolutionary computation CEC2007 (pp. 3500–3507). Singapore.

  • Rechenberg, I. (1973). Evolutionstrategie: optimierung technischer systeme nach prinzipien dier biolischen evolution. Stuttgart: Frommann-Holzboog.

    Google Scholar 

  • Reeves, C. (1996). Hybrid genetic algorithms for bin-packing and related problems. Annals of Operations Research, 63(3), 371–396.

    Article  Google Scholar 

  • Ross, P., Schulenburg, S., Blázquez, J. M., & Hart, E. (2002). Hyper-heuristics: learning to combine simple heuristics in bin-packing problems. In Proceedings of GECCO 2002 (pp. 942–948).

  • Ross, P., Blázquez, J. M., Schulenburg, S., & Hart, E. (2003). Learning a procedure that can solve hard bin-packing problems: a new GA-based approach to hyper-heuristics. In Proceedings of GECCO 2003 (pp. 1295–1306).

  • Schwefel, H. P. (1981). Numerical optimization of computer models. Chichester: Wiley.

    Google Scholar 

  • Terashima-Marín, H., Flores-Álvarez, E. J., & Ross, P. (2005a). Hyper-heuristics and classifier systems for solving 2D-regular cutting stock problems. In Proceedings of the genetic and evolutionary computation conference 2005 (pp. 637–643).

  • Terashima-Marín, H., Morán-Saavedra, A., & Ross, P. (2005b). Forming hyper-heuristics with GAs when solving 2D-regular cutting stock problems. In Proceedings of the congress on evolutionary computation (pp. 1104–1110), 2005.

  • Terashima-Marín, H., Farías-Zárate, C. J., Ross, P., & Valenzuela-Rendón, M. (2006). A GA-based method to produce generalized hyper-heuristics for the 2D-regular cutting stock problem. In Proceedings of the genetic and evolutionary computation conference 2006 (pp. 591–598).

  • Uday, A., Goodman, E. D., & Debnath, A. A. (2001). Nesting of irregular shapes using feature matching and parallel genetic algorithms. In E.D. Goodman (Ed.), 2001 genetic and evolutionary computation conference late breaking papers (pp. 429–434). San Francisco, California, USA.

  • Wilson, R. A., & Keil, F. C. (1999). The MIT encyclopedia of the cognitive science. Cambridge: MIT Press.

    Google Scholar 

  • Wäscher, G., Haussner, H., & Schumann, H. (2007). An improved typology of cutting and packing problems. European Journal of Operational Research, 183(3), 1109–1130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Terashima-Marín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terashima-Marín, H., Ross, P., Farías-Zárate, C.J. et al. Generalized hyper-heuristics for solving 2D Regular and Irregular Packing Problems. Ann Oper Res 179, 369–392 (2010). https://doi.org/10.1007/s10479-008-0475-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-008-0475-2

Keywords

Navigation