Skip to main content
Log in

Optimization for simulation: LAD accelerator

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The goal of this paper is to address the problem of evaluating the performance of a system running under unknown values for its stochastic parameters. A new approach called LAD for Simulation, based on simulation and classification software, is presented. It uses a number of simulations with very few replications and records the mean value of directly measurable quantities (called observables). These observables are used as input to a classification model that produces a prediction for the performance of the system. Application to an assemble-to-order system from the literature is described and detailed results illustrate the strength of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adenso-Diaz, B., & Laguna, M. (2006). Fine-tuning of algorithms using fractional experimental designs and local search. Operations Research, 54, 99–114.

    Article  Google Scholar 

  • Alexe, S. (2002). DIMACS mixer series. Datascope – a new tool for logical analysis of data. Rutgers: DIMACS.

    Google Scholar 

  • Alexe, G., & Hammer, P. L. (2006). Spanned patterns for the logical analysis of data. Discrete Applied Mathematics, 154(7), 1039–1049.

    Article  Google Scholar 

  • Alexe, S., & Hammer, P. L. (2007a). Accelerated algorithm for pattern detection in logical analysis of data. Discrete Applied Mathematics, 154(7), 1050–1063.

    Article  Google Scholar 

  • Alexe, S., & Hammer, P. L. (2007b). Pattern-based discriminants in the logical analysis of data. In P. M. Pardalos, V. L. Boginski, & A. Vazancopoulos (Eds.), Data mining in biomedicine. Berlin: Springer.

    Google Scholar 

  • Alexe, G., Alexe, S., Bonates, T., & Kogan, A. (2007). Logical analysis of data – the vision of Peter L. Hammer. Annals of Mathematics and Artificial Intelligence, 49, 265–312.

    Article  Google Scholar 

  • Andradóttir, S. (1998). Simulation optimization. In J. Banks (Ed.), Handbook of simulation (pp. 307–333). New York: Wiley.

    Chapter  Google Scholar 

  • Andradóttir, S. (2002). Simulation optimization: integrating research and practice. INFORMS Journal on Computing, 14(3), 216–219.

    Article  Google Scholar 

  • Barton, R. R. (1987). Testing strategies for simulation optimization. In A. Thesen & H. Grant (Eds.), Proceedings of the 1987 winter simulation conference (pp. 391–401). IEEE Press.

  • Boesel, J., Nelson, B. L., & Kim, S.-H. (2003). Using ranking and selection to “clean up” after simulation optimization. Operations Research, 51(5), 814–825.

    Article  Google Scholar 

  • Boros, E., Hammer, P. L., Ibaraki, T., & Kogan, A. (1997). Logical analysis of numerical data. Mathematical Programming, 79, 163–190.

    Google Scholar 

  • Boros, E., Hammer, P. L., Ibaraki, T., Kogan, A., Mayoraz, E., & Muchnik, I. (2000). An implementation of logical analysis of data. IEEE Transactions on Knowledge and Data Engineering, 12(2), 292–306.

    Article  Google Scholar 

  • Branke, J., Chick, S., & Schmidt, C. (2005). New developments in ranking and selection: an empirical comparison of the three main approaches. Proceedings of the 2005 winter simulation conference (pp. 708–717).

  • Chen, H.-C., Chen, C.-H., & Yücesan, E. (2000). Computing efforts allocation for ordinal optimization and discrete event simulation. IEEE Transactions on Automatic Control, 45(5), 960–964.

    Article  Google Scholar 

  • Chick, S. E., & Inoue, K. (2001). New two-stage and sequential procedures for selecting the best simulated system. Operations Research, 49, 732–743.

    Article  Google Scholar 

  • Colbourn, C. J., & Dinitz, J. H. (2007). Handbook of combinatorial designs (2nd ed.). London: Chapman/Hall/CRC.

    Google Scholar 

  • Dai, L. (1996). Convergence properties of ordinal optimization comparison in simulation of discrete event dynamic systems. Journal of Optimization Theory and Applications, 91(2), 363–388.

    Article  Google Scholar 

  • Engelmann, B., & Rauhmeier, R. (2006). The Basel II risk parameters – estimation, validation, and stress testing. Berlin: Springer.

    Google Scholar 

  • Engelmann, B., Hayden, E., & Tasche, D. (2003). Testing rating accuracy. Risk, 16(1), 82–86.

    Google Scholar 

  • Fu, M. C. (2002a). Optimization for simulation: theory vs. practice. INFORMS Journal on Computing, 14(3), 192–215.

    Article  Google Scholar 

  • Fu, M. C. (2002b). Simulation optimization in the future: evolution or revolution? INFORMS Journal on Computing, 14(3), 226–227.

    Article  Google Scholar 

  • Fu, M. C. (2007). Are we there yet? The marriage between simulation & optimization. OR/MS Today, June 2007, pp. 16–17.

  • Fu, M. C., Glover, F. W., & April, J. (2005). Simulation optimization: a review, new developments, and applications. In Kuhl, M. E., Steiger, N. M., Armstrong, F. B., & Joines, J. A. (Eds.), Proceedings of the 2005 winter simulation conference.

  • Glynn, P. W., & Juneja, S. (2004). A large deviations perspective on ordinal optimization. In Proceedings of the 2004 winter simulation conference (pp. 577–585).

  • Gould, N. I. M., Orban, D., Sartenaer, A., & Toint, P. L. (2005). Sensitivity of trust-region algorithms. 4OR, 3, 227–241.

    Article  Google Scholar 

  • Hammer, P. L. (1986). Partially defined boolean functions and cause-effect relationships. In International conference on multi-attribute decision making via or-based expert systems. Passau: University of Passau.

    Google Scholar 

  • Hammer, P. L., & Bonates, T. O. (2005). Linear and nonlinear set covering problems in the logical analysis of data. Workshop on mathematical programming for data mining and machine learning. McMaster University, Hamilton, Ontario.

  • Hammer, P. L., & Bonates, T. O. (2006). Logical analysis of data: from combinatorial optimization to medical applications. Annals of Operations Research, 148(1), 203–225.

    Article  Google Scholar 

  • Hammer, P. L., Kogan, A., & Lejeune, M. A. (2006). Modeling country risk ratings using partial orders. European Journal of Operational Research, 175(2), 836–859.

    Article  Google Scholar 

  • Hammer, P. L., Kogan, A., & Lejeune, M. A. (2007a). Reverse-engineering country risk ratings: combinatorial non-recursive model. Working Paper available at http://www.optimization-online.org/DB_HTML/2007/03/1619.html.

  • Hammer, P. L., Kogan, A., & Lejeune, M. A. (2007b). Reverse-engineering banks’ financial strength ratings using logical analysis of data. Working Paper available at http://www.optimization-online.org/DB_HTML/2007/02/1581.html.

  • Hedayat, A. S., Sloane, N. J., & Stufken, J. (1999). Orthogonal arrays: theory and applications. Berlin: Springer.

    Google Scholar 

  • Hicks, C. R., & Turner, K. V. (1999). Fundamental concepts in the design of experiments. Oxford.

  • Ho, Y. C., Sreenivas, R., & Vakili, P. (1992). Ordinal optimization of discrete event dynamic systems. Journal of Discrete Event Dynamic Systems, 2(2), 61–88.

    Article  Google Scholar 

  • Ho, Y. C., Cassandras, C. G., Chen, C.-H., & Dai, L. (2000). Ordinal optimization and simulation. Journal of Operational Research Society, 51, 490–500.

    Google Scholar 

  • Hong, L. J., & Nelson, B. L. (2006). Discrete optimization via simulation using COMPASS. Operations Research, 54(1), 115–129.

    Article  Google Scholar 

  • Kelly, J. P. (2002). Simulation optimization is evolving. INFORMS Journal on Computing, 14(3), 223–225.

    Article  Google Scholar 

  • Kleijnen, J. P. C., & Wan, J. (2007). Optimization of simulated systems: OptQuest and alternatives. Simulation Modelling Practice and Theory, 15(3), 354–362.

    Article  Google Scholar 

  • Kogan, A., & Lejeune, M. A. (2009, forthcoming). Combinatorial methods for constructing credit risk ratings. In C.-F. Lee & A. C. Lee (Eds.), Handbook in quantitative finance. Berlin: Springer.

    Google Scholar 

  • Lee, W. C. (1999). Probabilistic analysis of global performances of diagnostic tests: interpreting the Lorenz curve-based summary measures. Statistics in Medicine, 18, 455–471.

    Article  Google Scholar 

  • Lin, B. W., & Rardin, R. L. (1979). Controlled experimental design for statistical comparison of integer programming algorithms. Management Science, 25, 1258–1271.

    Article  Google Scholar 

  • Mann, H., & Whitney, D. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18, 50–60.

    Article  Google Scholar 

  • Nelson, B. L., Swann, J., Goldsman, D., & Song, W. (2001). Simple procedures for selecting the best simulated system when the number of alternatives is large. Operations Research, 49, 950–963.

    Article  Google Scholar 

  • Pasupathy, R., & Henderson, S. G. (2006). A testbed of simulation-optimization problems. Proceedings of the 2006 winter simulation conference.

  • Pukelsheim, F. (2006). Optimal design of experiments. SIAM (Reprint 1993).

  • Rimer, M., & Martinez, T. (2006). Classification-based objective functions. Machine Learning, 63(2), 183–205.

    Article  Google Scholar 

  • Sobehart, J., Keenan, S., & Stein, R. (2001). Benchmarking quantitative default risk models: a validation methodology. Algorithmic Research Quarterly, 4(12).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Lejeune.

Additional information

François Margot was supported by ONR grant N00014-97-1-0196.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lejeune, M.A., Margot, F. Optimization for simulation: LAD accelerator. Ann Oper Res 188, 285–305 (2011). https://doi.org/10.1007/s10479-009-0518-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0518-3

Keywords

Navigation