Skip to main content
Log in

Discrete and geometric Branch and Bound algorithms for medical image registration

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Aiming at the development of an exact solution method for registration problems, we present two different Branch & Bound algorithms for a mixed integer programming formulation of the problem. The first B&B algorithm branches on binary assignment variables and makes use of an optimality condition that is derived from a graph matching formulation. The second, geometric B&B algorithm applies a geometric branching strategy on continuous transformation variables. The two approaches are compared for synthetic test examples as well as for 2-dimensional medical data. The results show that medium sized problem instances can be solved to global optimality in a reasonable amount of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt, H., & Guibas, L. J. (2000). Discrete geometric shapes: Matching, interpolation, and approximation. In J.-R. Sack & J. Urrutia (Eds.), Handbook of computational geometry. Amsterdam: Elsevier. Chap. 3.

    Google Scholar 

  • Baird, H. S. (1984). Model-based image matching using location. PhD thesis, Princeton University.

  • Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 239–256.

    Article  Google Scholar 

  • Bishnu, A., Das, S., Nandy, S. C., & Bhattacharya, B. B. (2006). Simple algorithms for partial set pattern matching under rigid motion. Pattern Recognition, 39, 1162–1671.

    Article  Google Scholar 

  • Breuel, T. M. (2002). A comparison of search strategies for geometric branch and bound algorithms. In Lecture notes in computer science : Vol. 2352. Proceedings of the 7th European conference on computer vision, Part III, Copenhagen, Denmark, May 28–31, 2002. Berlin: Springer.

    Google Scholar 

  • Breuel, T. M. (2003a). Implementation techniques for geometric branch-and-bound matching methods. Computer Vision and Image Understanding, 90(3), 258–294.

    Article  Google Scholar 

  • Breuel, T. M. (2003b). On the use of interval arithmetic in geometric branch and bound algorithms. Pattern Recognition Letters, 24, 1375–1384.

    Article  Google Scholar 

  • Burkard, R. E. (1999). Selected topics on assignment problems. Discrete Applied Mathematics, 123, 257–302.

    Article  Google Scholar 

  • Chew, L. P., Goodrich, M. T., Huttenlocher, D. P., Kedem, K., Kleinberg, J. M., & Kravets, D. (1993). Geometric pattern matching under Euclidean motion. In Proceedings of the 5th Canadian conference on computational geometry (pp. 151–156).

  • Chui, H., & Rangarajan, A. (2003). A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding, 89, 114–141.

    Article  Google Scholar 

  • Eggert, D., Lorusso, A., & Fisher, R. (1997). Estimating 3-D rigid body transformations: A comparison of four major algorithms. Machine Vision and Applications, 9, 272–290.

    Article  Google Scholar 

  • Floudas, C. A., & Visweswaran, V. (1990). A global optimization algorithm (GOP) for certain classes of nonconvex NLPs I–II. Computers and Chemical Engineering, 14, 1398–1434.

    Article  Google Scholar 

  • Gorski, J., Pfeuffer, F., & Klamroth, K. (2007). Biconvex sets and optimization with biconvex functions—a survey and extensions. Mathematical Methods of Operations Research, 66(3), 373–407.

    Article  Google Scholar 

  • Hastreiter, P., Rezk-Salama, C., Soza, G., Bauer, M., Greiner, G., Fahlbusch, R., Ganslandt, O., & Nimsky, C. (2004). Strategies for brain shift evaluation. Medical Image Analysis, 8(4), 447–464.

    Article  Google Scholar 

  • Jian, B., & Vemuri, B. C. (2005). A robust algorithm for point set registration using mixture of Gaussians. IEEE International Conference on Computer Vision, 2, 1246–1251. ISSN 1550-5499.

    Google Scholar 

  • Liu, Y. (2004). Improving ICP with easy implementation for free-form surface matching. Pattern Recognition, 37(2), 211–226.

    Article  Google Scholar 

  • Loiola, E. M., de Abreu, N. M., Boaventura-Netto, P. O., Hahn, P., & Querido, T. (2007). A survey for the quadratic assignment problem. European Journal of Operational Research, 176, 657–690.

    Article  Google Scholar 

  • Maintz, J. B. A., & Viergever, M. A. (1998). A survey of medical image registration. Medical Image Analysis, 2(1), 1–36.

    Article  Google Scholar 

  • Mäkinen, V., & Ukkonen, E. (2002). Local similarity based point-pattern matching. In Lecture notes in computer science : Vol. 2373. Proceedings of the 13th annual symposium on combinatorial pattern matching, London, UK (pp. 115–132). Berlin: Springer.

    Chapter  Google Scholar 

  • Modersitzki, J. (2004). Numerical methods for image registration. New York: Oxford University Press.

    Google Scholar 

  • Mount, D. M., Le Moigne, J., & Netanyahu, N. S. (1998). Efficient algorithms for robust feature matching. Pattern Recognition, 92, 17–38.

    Google Scholar 

  • Myronenko, A., & Song, X. B. (2009). Point-set registration: Coherent point drift. Computing Research Repository, abs/0905.2635, 1–14.

    Google Scholar 

  • Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization. New York: Wiley-Interscience.

    Google Scholar 

  • Pfeuffer, F. (2006). Registrierung medizinischer bilddaten auf basis verallgemeinerter zuordnungsprobleme. Master’s thesis, Universität Erlangen-Nürnberg, Institut für Angewandte Mathematik.

  • Rangarajan, A., Chui, H., & Mjolsness, E. (2001). A relationship between spline-based deformable models and weighted graphs in non-rigid matching. In IEEE CVPR 2001 (Vol. 01, p. 897). Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • Rohr, K. (2001). Computational imaging and vision: Vol. 21. Landmark-based image analysis. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Rusinkiewicz, S., & Levoy, M. (2001). Efficient variants of the ICP algorithm. In Proceedings of the 3rd intl. conf. on 3D digital imaging and modeling (pp. 145–152).

  • Stiglmayr, M., Pfeuffer, F., & Klamroth, K. (2008). A branch & bound algorithm for medical image registration. In V. Brimkov, R. Barneva & H. Hauptman (Eds.), Proceedings of the 12th international workshop on combinatorial image analysis, IWCIA 08 (Vol. 4958, pp. 218–227). Berlin: Springer.

    Google Scholar 

  • Viola, P. A. (1995). Alignment by maximization of mutual information. PhD thesis, Massachusetts Institute of Technology.

  • Zheng, Y., & Doermann, D. (2006). Robust point matching for nonrigid shapes by preserving local neighborhood structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 643–649.

    Article  Google Scholar 

  • Zitová, B., & Flusser, J. (2003). Image registration methods: A survey. Image and Vision Computing, 21, 977–1000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stiglmayr.

Additional information

M. Stiglmayr and K. Klamroth were partially supported by German Research Foundation, Collaborative Research Center (SFB 603).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeuffer, F., Stiglmayr, M. & Klamroth, K. Discrete and geometric Branch and Bound algorithms for medical image registration. Ann Oper Res 196, 737–765 (2012). https://doi.org/10.1007/s10479-010-0760-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-010-0760-8

Keywords

Navigation