Skip to main content
Log in

Reformulation of a model for hierarchical divisive graph modularity maximization

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Finding clusters, or communities, in a graph, or network is a very important problem which arises in many domains. Several models were proposed for its solution. One of the most studied and exploited is the maximization of the so called modularity, which represents the sum over all communities of the fraction of edges within these communities minus the expected fraction of such edges in a random graph with the same distribution of degrees. As this problem is NP-hard, a few non-polynomial algorithms and a large number of heuristics were proposed in order to find respectively optimal or high modularity partitions for a given graph. We focus on one of these heuristics, namely a divisive hierarchical method, which works by recursively splitting a cluster into two new clusters in an optimal way. This splitting step is performed by solving a convex quadratic program. We propose a compact reformulation of such model, using change of variables, expansion of integers in powers of two and symmetry breaking constraints. The resolution time is reduced by a factor up to 10 with respect to the one obtained with the original formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams, W. P., & Dearing, P. M. (1994). On the equivalence between roof duality and Lagrangian duality for unconstrained 0–1 quadratic programming problems. Discrete Applied Mathematics, 48(1), 1–20.

    Article  Google Scholar 

  • Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749.

    Article  Google Scholar 

  • Agarwal, G., & Kempe, D. (2008). Modularity-maximizing graph communities via mathematical programming. The European Physical Journal B, Condensed Matter and Complex Systems, 66(3), 409–418.

    Article  Google Scholar 

  • Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Perron, S., & Liberti, L. (2010). Column generation algorithms for exact modularity maximization in networks. Physical Review E, 82(4), 046112.

    Article  Google Scholar 

  • Arenas, A., Fernández, F., & Gómez, S. (2008). Analysis of the structure of complex networks at different resolution levels. New Journal of Physics, 10(5), 053039.

    Article  Google Scholar 

  • Batagelj, V., & Mrvar, A. (2006). Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/.

  • Boulle, M. (2004). Compact mathematical formulation for graph partitioning. Optimization and Engineering, 5(3), 315–333.

    Article  Google Scholar 

  • Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., & Wagner, D. (2008). On modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2), 172–188.

    Article  Google Scholar 

  • Brown, G. G., & Dell, R. F. (2007). Formulating integer linear programs: a rogues’ gallery. INFORMS Transactions on Education, 7(2), 1–13.

    Article  Google Scholar 

  • Cafieri, S., Hansen, P., & Liberti, L. (2010). Loops and multiple edges in modularity maximization of networks. Physical Review E, 81(4), 046102.

    Article  Google Scholar 

  • Cafieri, S., Hansen, P., & Liberti, L. (2011). Locally optimal heuristic for modularity maximization of networks. Physical Review E, 83(5), 056105.

    Article  Google Scholar 

  • Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70(6), 066111.

    Article  Google Scholar 

  • Dartnell, L., Simeonidis, E., Hubank, M., Tsoka, S., Bogle, I. D. L., & Papageorgiou, L. G. (2005). Robustness of the p53 network and biological hackers. FEBS Letters, 579(14), 3037–3042.

    Article  Google Scholar 

  • Fan, N., & Pardalos, P. M. (2010). Linear and quadratic programming approaches for the general graph partitioning problem. Journal of Global Optimization, 48(1), 57–71.

    Article  Google Scholar 

  • Flake, G. W., Lawrence, S., Lee Giles, C., & Coetzee, F. M. (2002). Self-organization and identification of web communities. IEEE Computer, 35(3), 66–71.

    Article  Google Scholar 

  • Fortet, R. (1960). Applications de l’algèbre de Boole en recherche opérationelle. Revue Française de Recherche Opérationelle, 4, 17–26.

    Google Scholar 

  • Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3–5), 75–174.

    Article  Google Scholar 

  • Fortunato, S., & Barthélemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences of the United States of America, 104(1), 36–41.

    Article  Google Scholar 

  • Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7821–7826.

    Article  Google Scholar 

  • Good, B. H., de Montjoye, Y.-A., & Clauset, A. (2010). Performance of modularity maximization in practical contexts. Physical Review E, 81(4), 046106.

    Article  Google Scholar 

  • Grötschel, M., & Wakabayashi, Y. (1989). A cutting plane algorithm for a clustering problem. Mathematical Programming, 45(1), 59–96.

    Article  Google Scholar 

  • Guimerà, R., & Amaral, L. A. N. (2004). Functional cartography of complex metabolic networks. Nature, 433, 895–900.

    Article  Google Scholar 

  • Hugo, V. (1951). Bibliothèque de la Pleiade. Les Misérables. Paris: Gallimard.

    Google Scholar 

  • IBM (2010). ILOG CPLEX 12.2 user’s manual. IBM.

  • Knuth, D. E. (1993). The Stanford GraphBase: a platform for combinatorial computing. Reading: Addison-Wesley.

    Google Scholar 

  • Krebs, V. (2008). http://www.orgnet.com/.

  • Kumpula, J. M., Saramäki, J., Kaski, K., & Kertész, J. (2007). Limited resolution and multiresolution methods in complex network community detection. Fluctuations and Noise Letters, 7(3), 209–214.

    Article  Google Scholar 

  • Lusseau, D., Schneider, K., Boisseau, O. J., Haase, P., Slooten, E., & Dawson, S. M. (2003). The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology, 54(4), 396–405.

    Article  Google Scholar 

  • Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., & Alon, U. (2004). Superfamilies of evolved and designed networks. Science, 303, 1538–1542.

    Article  Google Scholar 

  • Newman, M. E. J. (2006a). Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 74(3), 036104.

    Article  Google Scholar 

  • Newman, M. E. J. (2006b). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8577–8582.

    Article  Google Scholar 

  • Newman, M. E. J. (2010). Networks: an introduction. London: Oxford University Press.

    Book  Google Scholar 

  • Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113.

    Article  Google Scholar 

  • Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435, 814–818.

    Article  Google Scholar 

  • Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying communities in networks. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2658–2663.

    Article  Google Scholar 

  • Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection. Physical Review E, 74(1), 016110.

    Article  Google Scholar 

  • Sales-Pardo, M., Guimerà, R., Moreira, A., & Amaral, L. A. N. (2007). Extracting the hierarchical organization of complex systems. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15224–15229.

    Article  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.

    Article  Google Scholar 

  • Xu, G., Tsoka, S., & Papageorgiou, L. G. (2007). Finding community structures in complex networks using mixed integer optimisation. The European Physical Journal B, Condensed Matter and Complex Systems, 60(2), 231–239.

    Article  Google Scholar 

  • Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33(4), 452–473.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their precious comments and suggestions. Financial support by Grants Digiteo 2009-14D “RMNCCO” and Digiteo 2009-55D “ARM” is gratefully acknowledged. P.H. was partially supported by fqrnt (Fonds de recherche du Québec—Nature et technologies) team grant PR-131365.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cafieri, S., Costa, A. & Hansen, P. Reformulation of a model for hierarchical divisive graph modularity maximization. Ann Oper Res 222, 213–226 (2014). https://doi.org/10.1007/s10479-012-1286-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-012-1286-z

Keywords

Navigation