Skip to main content
Log in

Stochastic vs deterministic programming in water management: the value of flexibility

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In the paper we develop a two stage scenario-based stochastic programming model for water management in the Indus Basin Irrigation System (IBIS). We present a comparison between the deterministic and scenario-based stochastic programming model. Our model takes stochastic inputs on hydrologic data i.e. inflow and rainfall. We divide the basin into three rainfall zones which overlap on 44 canal commands. Data on crop characteristics are taken on canal command levels. We then use ten-daily and monthly time intervals to analyze the policies. This system has two major reservoirs and a complex network of rivers, canal head works, canals, sub canals and distributaries. All the decisions on hydrologic aspects are governed by irrigation and agricultural development policies. Storage levels are maintained within the minimum and maximum bounds for every time interval according to a power generation policy. The objective function is to maximize the expected revenue from crops production. We discuss the flexibility of two stochastic optimization models with varying time horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad, N. (1993). Water resources of Pakistan. Lahore: Miraj uddin Press.

    Google Scholar 

  • Anwar, A. A., & Clarke, D. (2001). Irrigation scheduling using mixed-integer linear programming. Journal of Irrigation and Drainage Engineering, 127(2), 63–69.

    Article  Google Scholar 

  • Azar, A. H., Murty, V. V. N., & Phien, H. N. (1992). Modeling irrigation scheduling for lowland rice with stochastic rainfall. Journal of Irrigation and Drainage Engineering, 118(1), 36–55.

    Article  Google Scholar 

  • Beale, M. L. (1955). On minimizing a convex function subject to linear inequalities. Journal of the Royal Statistical Society. Series B. Methodological, 17, 17–184.

    Google Scholar 

  • Birge, J., & Louveaux, F. (1997). Introduction to stochastic programming. New York: Springer.

    Google Scholar 

  • Bogle, M. G. V., & O’Sullivan, M. J. (1979). Stochastic optimization of a water supply system. Water Resources Research, 15(4), 778–786.

    Article  Google Scholar 

  • Burt, O. R., & Stauber, M. S. (1971). Economic analysis of irrigation in subhumid climate. American Journal of Agricultural Economics, 53(1), 33–46.

    Article  Google Scholar 

  • Butcher, W. S. (1971). Stochastic dynamic programming for optimum reservoir operation. Water Resources Bulletin (Harrisburg), 7(1), 115–123.

    Article  Google Scholar 

  • Dantzig, G. B. (1955). Linear programming under uncertainty. Management Science, 1, 197–206.

    Article  Google Scholar 

  • Dariane, A. B., & Hughes, T. C. (1991). Application of crop yield functions in reservoir operation. Water Resources Bulletin (Harrisburg), 27(4), 649–656.

    Article  Google Scholar 

  • Dudley, N. J. (1970). A simulation and dynamic programming approach to irrigation decision making in a variable environment. Agricultural Economics and Business Management Bulletin 9, Faculty of Agriculture Economics, University of New England, Armidale, Australia.

  • Dudley, N. J. (1972). Irrigation planning for optimal intraseasonal water allocation. Water Resources Research, 8(3), 586–594.

    Article  Google Scholar 

  • Dudley, N. J. (1988). A single decision-maker approach to irrigation reservoir and farm management decision making. Water Resources Research, 24(5), 633–640.

    Article  Google Scholar 

  • Dudley, N. J., & Burt, O. R. (1973). Stochastic reservoir management and system design for irrigation. Water Resources Research, 9(3), 507–522.

    Article  Google Scholar 

  • Dudley, N. J., & Scott, B. W. (1993). Integrating irrigation water demand, supply and delivery management in a stochastic environment. Water Resources Research, 29(9), 3093–3101.

    Article  Google Scholar 

  • Dudley, N. J., Howell, D. T., & Musgrave, W. F. (1971). Optimal intraseasonal irrigation water allocation. Water Resources Research, 7(4), 770–778.

    Article  Google Scholar 

  • Dudley, N. J., Reklis, D., & Burt, O. R. (1976). Reliability, trade-offs and water resource development modeling with multiple crops. Water Resources Research, 12(6), 1101–1108.

    Article  Google Scholar 

  • Economic survey of Pakistan (2005). Govt. of Pakistan, Ministry of Finance.

  • Ganji, A., Ponnambalam, K., Khalili, D., & Karamouz, M. (2006). A new stochastic optimization model for deficit irrigation. Journal of Irrigation Science, 25, 63–73.

    Article  Google Scholar 

  • Hall, W. A., Tauxe, G. W., & Yeh, W. W. G. (1969). An alternate procedure for the optimization of operation for planning with multiple river, multiple purpose system. Water Resources Research, 5(6), 1367–1372.

    Article  Google Scholar 

  • Hochreiter, R., & Pflug, G. (2007). Financial scenario generation for stochastic multi-stage decision process as a facility location problem. Annals of Operations Research, 152, 257–272.

    Article  Google Scholar 

  • Houghtalen, R. J., & Loftis, J. C. (1988). Irrigation water delivery system operation via aggregate state dynamic programming. Water Resources Bulletin (Harrisburg), 24(2), 427–434.

    Article  Google Scholar 

  • KaleemUllah, M., Zaigham, H., & Saim, M. (2001). Spatial distribution of reference and potential evaporation across the Indus Basin Irrigation System. International Water Management Institute, Lahore. Working Paper 24.

  • Karamouz, M., & Houck, M. H. (1982). Annual and monthly reservoir operating rules generated by deterministic optimization. Water Resources Research, 18(5), 1337–1344.

    Article  Google Scholar 

  • Kelman, J., Stedinger, J. R., Cooper, L. A., Hsu, E., & Yuan, S. Q. (1982). Sampling stochastic dynamic programming applied to reservoir operation. Water Resources Research, 26(3), 447–454.

    Article  Google Scholar 

  • Kijine, J. W., & Van der Velde, E. J., Jr. (1992). Irrigation management implications of Indus Basin climate change—case study. Lahore: IIMI. (From “World commission on Dams” documents.)

    Google Scholar 

  • Labadie, J. W. (2004). Optimal operation of multireservoir systems: state-of-the-art review. Journal of Water Resources Planning and Management, 130, 93–111.

    Article  Google Scholar 

  • Mannocchi, F., & Mecarelli, P. (1994). Optimization analysis of deficit irrigation systems. Journal of Irrigation and Drainage, 120(3), 484–503.

    Article  Google Scholar 

  • Mawar, P. A., & Thorn, D. (1974). Improved dynamic programming procedure and their application to water resource systems. Water Resources Research, 10(2), 183–190.

    Article  Google Scholar 

  • Monge, G. (1781). Mémoire sur la théorie des déblais et des remblais. Histoire de L’Academie des Sciences. Paris, 29, 352–362.

    Google Scholar 

  • Mujumdar, P. P., & Ramesh, T. S. V. (1997). Real-time reservoir operation for irrigation. Water Resources Research, 33(5), 1157–1164.

    Article  Google Scholar 

  • Oven-Thompson, K. I., Alercon, L., & Marks, D. H. (1982). Agricultural versus hydropower trade-offs in the operation of the High Aswan Dam. Water Resources Research, 18(6), 1605–1614.

    Article  Google Scholar 

  • Paudyal, G. N., & Gupta, A. D. D. (1990). Irrigation planning by multilevel optimization. Journal of Irrigation and Drainage Engineering, 116(2), 273–291.

    Article  Google Scholar 

  • Paul, S., Panda, S. N., & Kumar, D. N. (2000). Optimal irrigation allocation: a multilevel approach. Journal of Irrigation and Drainage Engineering, 126(3), 149–156.

    Article  Google Scholar 

  • Pflug, G. (2001). Scenario tree generation for multi-period financial optimization by optimal discretization. Mathematical Programming Series B, 89, 251–271.

    Article  Google Scholar 

  • Rachev, S. T. (1991). Probability metrics and the stability of stochastic models. New York: Wiley.

    Google Scholar 

  • Rao, N. H., Sarma, P. B. S., & Chander, S. (1990). Optimal multicrop allocation of seasonal and intraseasonal irrigation water. Water Resources Research, 26(4), 551–559.

    Article  Google Scholar 

  • Rao, N. H., Sarma, P. B. S., & Chander, S. (1992). Real-time adaptive irrigation scheduling under a limited water supply. Agricultural Water Management, 20, 267–279.

    Article  Google Scholar 

  • Ravikumar, V., & Venugopal, K. (1998). Optimal operation of South Indian irrigation systems. Journal of Water Resources Planning and Management, 124(5), 264–271.

    Article  Google Scholar 

  • Roefs, T. G., & Guitron, A. (1975). Stochastic reservoir model: relative computational effort. Water Resources Research, 11(6), 801–804.

    Article  Google Scholar 

  • Sanford, S. C. (1969). Economics of water allocation within irrigation scheme. In The economics of irrigation development: a symposium. Study 6. Dep. of Agri. Eco. and Develop. Univ. of Reading, England

    Google Scholar 

  • Schweig, Z., & Cole, J. A. (1968). Optimal control of linked reservoir. Water Resources Research, 4(3), 479–497.

    Article  Google Scholar 

  • Statistical Year Book (Series). (2005). Statistical Bureau of Pakistan.

  • Stedinger, J. R., Sule, B. F., & Loucks, D. P. (1984). Stochastic dynamic programming model for reservoir optimization. Water Resources Research, 20(11), 1499–1505.

    Article  Google Scholar 

  • Sunantara, J. D., & Ramirez, J. A. (1997). Optimal stochastic multicrop seasonal and intraseasonal irrigation control. Journal of Water Resources Planning and Management, 123(1), 39–48.

    Article  Google Scholar 

  • Torabi, M., & Mobasheri, F. (1973). A stochastic dynamic programming model for the optimum operation of the multi purpose reservoir. Water Resources Bulletin (Harrisburg), 9(6), 1089–1099.

    Article  Google Scholar 

  • Umamhesh, N. V., & Sreenivasulu, P. (1997). Two-phase stochastic dynamic programming model for optimal operation of irrigation reservoir. Water Resources Management, 11, 395–406.

    Article  Google Scholar 

  • Vedula, S., & Kumar, D. N. (1996). An integrated model for optimal reservoir operation for irrigation of multiple crops. Water Resources Research, 32(4), 1101–1108.

    Article  Google Scholar 

  • Vedula, S., & Mujumdar, P. P. (1992). Optimal reservoir operation for irrigation of multiple crops. Water Resources Research, 28(1), 1–9.

    Article  Google Scholar 

  • Wardlaw, R., & Barnes, J. (1999). Optimal allocation of irrigation water supplies in real time. Journal of Irrigation and Drainage Engineering, 125(6), 345–353.

    Article  Google Scholar 

  • Warsi, M. (1991). Indus and Other River Basin of Pakistan, stream flow records. Case Study Report. WAPDA.

  • Water And Power Development Authority (WAPDA) (2007). Pakistan.

  • World Bank (1992). Irrigation planning with environmental consideration. World Bank, Technical Paper 166, Washington, DC.

  • World Commission on Dams (2000). Tarbela Dam and related aspects of the Indus River Basin, Pakistan, A WCD case study research report. Asianics Agro-Dev. International (Pvt) Ltd Cape Town.

  • Ximing, C., McKinny, D. C., & Lasdon, L. (2003). Integrated hydrologic-agronomic-economic models for river basin management. Journal of Water Resources Planning and Management, 129(1), 4–17.

    Article  Google Scholar 

  • Yeh, W. W. G. (1985). Reservoir management and operation models: a state-of-the-art review. Water Resources Research, 21(12), 1797–1818.

    Article  Google Scholar 

Download references

Acknowledgements

We are greatly thankful to Dalia Bach from the University of Columbia, who helped us a lot to improve this paper. Thanks to referee for his value suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousaf Shad Muhammad.

Additional information

This research work is sponsored by Higher Education Commission (HEC), Pakistan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, Y.S., Pflug, G.C. Stochastic vs deterministic programming in water management: the value of flexibility. Ann Oper Res 223, 309–328 (2014). https://doi.org/10.1007/s10479-013-1455-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1455-8

Keywords

Navigation