Skip to main content
Log in

Multifractal theory with its applications in data management

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The extraction of interesting information from enormous and irregular datasets has always been a significant research topic. For the datasets with irregular distribution and self-similarity, multifractal theory is the most appreciated approach and has been successfully applied in many fields, such as financial analysis, image processing, medical diagnosis, earthquake study, etc. In this paper, we make a detailed analysis and summary on three main functions, namely multifractal structure diagnosis, tendency and singularity analysis. Finally, some experiments based on oil prices data and spatial physical data are carried out to validate its performance effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abadi, M., & Grandchamp, E. (2006). Texture features and segmentation based on multifractal approach. The 11th iberoamerican congress on pattern recognition. Berlin Heidelberg: Springer.

    Google Scholar 

  • Ausloos, M., & Ivanova, K. (2002). Multifractal nature of stock exchange prices. Computer Physics Communications, 147(1), 582–585.

    Article  Google Scholar 

  • Barnsley, M. F. (1996). Fractal image compression. Notices of the AMS, 43(6), 657–662.

    Google Scholar 

  • Barnsley, M. F., Sloan, & A. D. (1990). Methods and apparatus for image compression by iterated function system. U.S. Patent No 4,941,193.

  • Cajueiro, D. O., & Tabak, B. M. (2007). Long-range dependence and multifractality in the term structure of libor interest rates. Physica A: Statistical Mechanics and its Applications, 373(1), 603–61.

    Article  Google Scholar 

  • Cheng, Q. M. (1997). Fractal/multifractal modeling and spatial analysis. In Proceedings of the International Mathematical Geology Association Conference (Vol. 1, pp. 57–72).

  • Cheng, Q. M., Russell, H., Sharpe, D., et al. (2001). Gis-based statistical and fractal/multifractal analysis of surface stream patterns in the oak ridges moraine. Computers & geosciences, 27(5), 513–526.

    Article  Google Scholar 

  • Cheng, Q. M. (2004). A new model for quantifying anisotropic scale invariance and for decomposition of mixing patterns. Mathematical Geology, 36(3), 345–360.

    Article  Google Scholar 

  • Cheng, Q. M. (2006). GIS-based multifractal anomaly analysis for prediction of mineralization and mineral deposits. In J. Harris (Ed.), GIS Applications in Earth Sciences (pp. 289–300). Geological Association of Canada Special Paper.

  • Cheng, Q. M. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in gejiu, yunnan province. China. Ore Geology Reviews, 32(1), 314–324.

    Article  Google Scholar 

  • Chhabra, A., & Jensen, R. (1989). Direct determination of the f(alpha) singularity spectrum. Physical Review Letter, 62(12), 1327–1330.

    Article  Google Scholar 

  • Cuevas, E. (2003). F(alpha) multifractal spectrum at strong and weak disorder. Physical Review B, 68, 24206–24212.

    Article  Google Scholar 

  • Dong, Y. Z., & Chen, H. X. (2000). An adaptive method of IFS image compression based on creditability. Computers and Communications, 2000. Proceedings. Fifth IEEE Symposium on ISCC ( pp. 744–749).

  • Desaulniers-Soucy, N., & Iuoras, A. (1999). Traffic modeling with universal multifractals. IEEE Global Telecommunications Conference, 1, 1058–1065.

    Google Scholar 

  • Dubuisson, M., & Dubes, R. (1994). Efficacy of fractal features in segmenting images of natural textures. Pattern Recognition Letters, 15(4), 419–431.

    Article  Google Scholar 

  • Espinal, F., & Chandran, R. (1998). Wavelet-based fractal signature for texture classification. Proceedings of SPIE. Wavelet Applications, 3391, 602–611.

    Google Scholar 

  • Gal, Z., Terdik, G., & Igloi, E. (2001). Multifractal study of internet traffic. In High performance switching and routing, IEEE workshop on (pp. 197–201). IEEE.

  • Gan, D., & Shouhong, Z. (2000). Detection of sea-surface radar targets based on multifractal analysis. Electronics Letters, 36(13), 1144–1145.

    Article  Google Scholar 

  • Gu, G. F., & Zhou, W. X. (2010). Detrending moving average algorithm for multifractals. Physics Review E, 82(1), 11–36.

    Article  Google Scholar 

  • Gao, J., & Rubin, I. (2000). Statistical properties of multiplicative multifractal processes in modelling telecommunications traffic streams. Electronics Letters, 36(1), 101–102.

    Article  Google Scholar 

  • Halsey, T., Jensen, M., Kadanoff, L., Procaccia, I., & Shraiman, B. I. (1986). Fractal measures and their singularities: the characterization of strange sets. Physical Review A., 33(2), 1141–1151.

    Article  Google Scholar 

  • Hong, F., & Wu Z. M. (2003). Multifractal analysis and model of the MPEG-4 video traffic. In Performance, computing, and communications conference, 2003. Conference Proceedings of the 2003 IEEE International (pp. 463–467). IEEE.

  • Hsu, W. Y., Lin, C. C., Ju, M. S., & Sun, Y. N. (2007). Wavelet-based fractal features with active segment selection: application to single-trial eeg data. Journal of Neuroscience Methods, 163, 145–160.

    Article  Google Scholar 

  • Ida, T., & Sambonsugi, Y. (1998). Image segmentation and contour detection using fractal coding. IEEE transactions on circuits and systems for video technology., 8(8), 968–975.

    Article  Google Scholar 

  • Ivanova, K., & Ausloos, M. (1999). Low q-moment multifractal analysis of gold price, dow jones industrial average and bgl-usd exchange rate. The European Physical Journal B-Condensed Matter and Complex Systems, 8(4), 665–669.

    Article  Google Scholar 

  • Ivanov, P. C., Amaral, L. A. N., Goldberger, A. L., et al. (1999). Multifractality in human heartbeat dynamics. Nature, 399(6735), 461–465.

    Article  Google Scholar 

  • Jacquin, A. E. (1992). Image coding based on a fractal theory of iterated contractive image transformations. IEEE Transactions on Image Processing, 1(1), 18–30.

    Article  Google Scholar 

  • Jaffard, S. (1997). Multifractal formalism for functions. SIAM Journal of Mathematical Analysis, 28, 944–970.

    Article  Google Scholar 

  • Kabasinskas, A., Sakalauskas, L., & Sun, E. W. (2012). Mixed-stable models for analyzing high- frequency financial data. Journal of Computational Analysis and Application, 14(7), 1210–1226.

    Google Scholar 

  • Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., et al. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications, 316(1), 87–114.

    Article  Google Scholar 

  • Kaplan, L. (1999). Extended fractal analysis for texture classification and segmentation. IEEE Transactions on Image Processing, 8(11), 1572–1585.

    Article  Google Scholar 

  • Keller, J. M., Chen, S., & Crownover, R. M. (1989). Texture description and segmentation through fractal geometry. Computer Vision, Graphics, and Image Processing, 45(2), 150–166.

  • Kikuchi, A., Unno, N., Horikoshi, T., Shimizu, T., Kozuma, S., & Taketani, Y. (2005). Changes in fractal features of fetal heart rate during pregnancy. Early Human Development, 81, 655–661.

  • Kreinovich, V., Chiangpradit, M., & Panichkitkosolkul, W. (2012). Efficient algorithms for heavy-tail analysis under interval uncertainty. Annals of Operations Research, 195(1), 73–96.

    Article  Google Scholar 

  • Lu, X., Wang, K., & Dou, H. J. (2001). Wavelet multifractal modeling for network traffic and queuing analysis. In Computer networks and mobile computing, 2001. Proceedings. 2001 International Conference on (pp. 260–265). IEEE.

  • Mandelbrot, B. B. (1967). How long is the coast of britain? statistical self-similarity and fractal dimension. Science, 156, 636–638.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1983). In Freeman, (Ed.), The Fractal Geometry of Nature (p. 468). New York: W. H. Freeman and Company.

  • Mandelbrot, B. B. (1999). A multifractal walk down wall street. Scientific American, 5, 20–23.

    Google Scholar 

  • Mantegna, R. N., & Stanley, H. E. (1998). Modeling of financial data: comparison of the truncated lévy flight and the arch (1) and garch (1, 1) processes. Physica A: Statistical Mechanics and its Applications, 254(1), 77–84.

    Article  Google Scholar 

  • Matia, K., Ashkenazy, Y., & Stanley, H. E. (2003). Multifractal properties of price fluctuations of stocks and commodities. EPL (Europhysics Letters), 61(3), 422.

    Article  Google Scholar 

  • Meng, W. (2001). Wavelet coding with Fractal for image sequences. In Intelligent multimedia, video and speech processing, 2001. Proceedings of 2001 International Symposium on (pp. 514–517). IEEE.

  • Meneveau, C., & Sreenivasan, K. R. (1991). The multifractal nature of turbulent energy dissipation. Journal of Fluid Mechanics, 224, 429–484.

    Article  Google Scholar 

  • Montrucchio, L., & Privileggi, F. (1999). Fractal steady states instochastic optimal control models. Annals of Operations Research, 88, 183–197.

    Article  Google Scholar 

  • Meyer, F. G., Averbuch, A. Z., & Stromberg, J. O. (2000). Fast adaptive wavelet packet image compression. IEEE Transactions on Image Processing, 9(5), 792–800.

    Article  Google Scholar 

  • Pasquini, M., & Serva, M. (1999). Multiscaling and clustering of volatility. Physica A: Statistical Mechanics and its Applications, 269(1), 140–147.

    Article  Google Scholar 

  • Perrier, E., Tarquis, A., & Dathe, A. (2006). A program for fractal and multifractal analysis of 2d binary images. Computer algorithms versus mathematical theory. Geoderma, 134(3–4), 284–294.

    Google Scholar 

  • Ramchurn, S. K., & Murray, A. (2001). Multifractal analysis of heart rate variability. In Computers in Cardiology 2001 (pp. 461–464). IEEE.

  • Ruan, S., & Bloyet, D. (2000). Mrf models and multifractal analysis for mri segmentation. In Signal Processing Proceedings, 2000. WCCC-ICSP 2000. 5th International Conference on (Vol. 2, pp. 1259–1262). IEEE.

  • Reljin, I., Reljin, B., Pavlovic, I., et al. (2000). Multifractal analysis of gray-scale images. In Electrotechnical Conference, 2000. MELECON 2000. 10th Mediterranean (Vol. 2, pp. 490–493). IEEE.

  • Reljin, I. S., & Reljin, B. D. (2000). Neurocomputing in teletraffic: multifractal spectrum approximation. In Neural Network Applications in Electrical Engineering, 2000. NEUREL 2000. Proceedings of the 5th Seminar on (pp. 24–31). IEEE.

  • Ribeiro, V. J., Riedi, R. H., & Baraniuk, R. G. (2001). Wavelets and multifractals for network traffic modeling and inference. In Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP’01). 2001 IEEE International Conference on. (Vol. 6, pp. 3429–3432). IEEE.

  • Riedi, R. H., Crouse, M. S., Ribeiro, V. J., et al. (1999). A multifractal wavelet model with application to network traffic. IEEE Transactions on Information Theory, 45(3), 992–1018.

    Article  Google Scholar 

  • Russel, D., Hanson, J., & Ott, E. (1980). Dimension of strange attractors. Physical Review Letters, 45(14), 1175–1178.

    Article  Google Scholar 

  • Renyi, A. (1955). On a new axiomatic theory of probability. Acta Mathematica Hungarica, 6(3–4), 285–335.

    Article  Google Scholar 

  • Sadovskiy, M. A., Golubeva, T. V., & Pisarenko, V. F., et al. (1984). Characteristic dimensions of rock and hierachical properties of seismicity. Izvestiya, Academy of Sciences, USSR.: Physics of the solid earth (Engish Translation), 20, 87–96.

  • Siddiqui, S., & Kinsner, W. (2003). Modelling of multifractal object boundaries. electrical and computer engineering, 2003. ieee ccece 2003. Canadian Conference on. IEEE, 2, 1403–1408.

    Google Scholar 

  • Skjeltorp, J. A. (2000). Scaling in the norwegian stock market. Physica A: Statistical Mechanics and its Applications, 283(3), 486–528.

    Article  Google Scholar 

  • Smalley, R. F. (1987). A fractal approach to the clustering of earthquakes: applications to the seismicity of the new hebrides. Bulletin of the Seismological Society of America, 77(4), 1368–1381.

    Google Scholar 

  • Spector, A., & Grant, F. S. (1970). Statistical models for interpreting aeromagnetic data. Geophysics, 35(2), 293–302.

    Article  Google Scholar 

  • Stanley, H. E., & Meakin, P. (1988). Multifractal phenomena in physics and chemistry. Nature, 335(6189), 405–409.

    Article  Google Scholar 

  • Sun, X., Chen, H. P., Wu, Z. Q., & Yuan, Y. Z. (2001a). Multifractal analysis of hang seng index in hong kong stock market. Physica A: Statistical Mechanics and its Applications, 291, 553–562.

    Article  Google Scholar 

  • Sun, X., Chen, H. P., Yuan, Y. Z., & Wu, Z. Q. (2001b). Predictability of multifractal analysis of hang seng stock index in hong kong. Physica A: Statistical Mechanics and its Applications, 301, 473–482.

    Article  Google Scholar 

  • Tél, T., Fulop, A., & Vicsek, T. (1989). Determination of fractal dimensions for geometrical multifractals. Physica A: Statistical Mechanics and its Applications., 159(2), 155–166.

    Article  Google Scholar 

  • Vehel, J. L., & Mignot, P. (1994). Multifractal segmentation of images. Fractals, 2(03), 371–377.

    Article  Google Scholar 

  • Veneziano, D., Moglen, G., & Bras, R. (1995). Multifractal analysis: pitfalls of standard procedures and alternatives. Physical Review E, 52(2), 1387–1398.

    Article  Google Scholar 

  • Vicsek, T. (1990). Mass multifractals. Physica A: Statistical Mechanics and its Applications, 168(1), 490–497.

    Article  Google Scholar 

  • Wang, J., Ning, X., & Chen, Y. (2003). Multifractal analysis of electronic cardiogram taken from healthy and unhealthy adult subjects. Physica A: Statistical Mechanics and its Applications, 323, 561–568.

    Article  Google Scholar 

  • Wang, J., Ning, X., Ma, Q., Bian, C., Xu, Y., & Chen, Y. (2005). Multiscale multifractality analysis of a 12-lead electrocardiogram. Physical Review E, 71(6), 062902.1–062902.4.

    Google Scholar 

  • Xia, Y., Feng, D., & Zhao, R. (2006). Morphology-based multifractal estimation for texture segmentation. IEEE Transactions on Image Processing, 15(3), 614–624.

    Article  Google Scholar 

  • Zhuang, X., & Meng, Q. (2004). Local fuzzy fractal dimension and its application in medical image processing. Artificial Intelligence in Medicine, 32(1), 29–36.

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the National Natural Science Foundation of China (Nos. 51379049), the Fundamental Research Funds for the Central Universities of China (Nos. HEUCFX41302) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Heilongjiang Province (Nos. LC2013C21). The authors would like to thank the anonymous reviewers for improving the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Chang, S. & Liu, C. Multifractal theory with its applications in data management. Ann Oper Res 234, 133–150 (2015). https://doi.org/10.1007/s10479-014-1599-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1599-1

Keywords

Navigation