Skip to main content
Log in

Joint procurement and demand-side bidding strategies under price volatility

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider a firm buying a commodity from a spot market as raw material and selling a final product by submitting bids. Bidding opportunities (i.e., demand arrivals) are random, and the likelihood of winning bids (i.e., selling the product) depends on the bid price. The price of the commodity raw material is also stochastic. The objective of the firm is to jointly decide on the procurement and bidding strategies to maximize its expected total discounted profit in the face of this demand and supply randomness. We model the commodity prices in the spot market as a Markov chain and the bidding opportunities as a Poisson process. Subsequently, we formulate the decision-making problem of the firm as an infinite-horizon stochastic dynamic program and analytically characterize its structural properties. We prove that the optimal procurement strategy follows a price-dependent base-stock policy and the optimal bidding price is decreasing with respect to the inventory level. We also formulate and analyze three intuitively appealing heuristic strategies, which either do not allow for carrying inventory or adopt simpler bidding policies (e.g., a constant bid price or myopically set bid prices). Using historical daily prices of several commodities, we then calibrate our models and conduct an extensive numerical study to compare the performances of the different strategies. Our study reveals the importance of adopting the optimal integrative procurement and bidding strategy, which is particularly rewarding when the raw material prices are more volatile and/or when there is significant competition on the demand side (the probability of winning is much smaller when submitting the same bid price). We establish that the relative performances of the three heuristic strategies depend critically on the holding cost of raw material inventory and the competitive environment, and identify conditions under which the shortfalls in profits from adopting such strategies are relatively less significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Data about oil and copper prices are from http://www.datastream.com.

  2. Since the majority of the projects are rather similar in nature, indeed the company can buy for future projects.

  3. We refer the readers to Gümüş et al. (2012) and Vakharia and Yenipazarlı (2009) for detailed reviews of papers dealing with quantity risk.

  4. When the firm does not hold any inventory, the planning periods are decoupled, and hence a myopic bidding strategy is indeed optimal.

  5. The optimal policy for ZI has already been discussed in the previous section.

  6. We refer the readers to Gavirneni (2004) and Yang and Xia (2009) for conditions under which \(W_i\) is monotonically decreasing with respect to \(p_i\) under slightly different modeling frameworks.

  7. The values of these 10 price points and the corresponding \(\gamma _{ij}\) are the same as those used in Sect. 5.

  8. We terminate the algorithm once the average reward reaches four-digit accuracy.

  9. ZI, by definition, holds no inventory.

  10. Note that the different strategies are derived from the estimated parameters for the price processes.

References

  • Akella, R., Araman, V. F., & Kleinknecht, J. (2002). B2B markets: Procurement and supplier risk management in e-business. In J. Geunes, P. M. Pardalos, & H. E. Romeijn (Eds.), Supply chain management: Models, applications, and research directions (pp. 33–66). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Berling, P., & Martínez de Albéniz, V. (2011). Optimal inventory policies when purchase price and demand are stochastic. Operations Research, 59(1), 109–124.

    Article  Google Scholar 

  • Billingsley, P. (1968). Statistical inference for Markov processes. Chicago: University of Chicago Press.

    Google Scholar 

  • Bladt, M., & Sørensen, M. (2009). Efficient estimation of transition rates between credit ratings from observations at discrete time points. Quantitative Finance, 9(2), 147–160.

    Article  Google Scholar 

  • Cohen, M. A., & Agrawal, N. (1999). An analytical comparison of long and short term contracts. IIE Transactions, 31(8), 783–796.

    Google Scholar 

  • Economist Intelligence Unit. (2009). Managing supply-chain risk for reward. Technical report, Economist Intelligence Unit.

  • Fabian, T., Fisher, J. L., Sasieni, M. W., & Yardeni, A. (1959). Purchasing raw material on a fluctuating market. Operations Research, 7(1), 107–122.

    Article  Google Scholar 

  • Federgruen, A., & Heching, A. (1999). Combined pricing and inventory control under uncertainty. Operations Research, 47(3), 454–475.

    Article  Google Scholar 

  • Fu, Q., Lee, C. Y., & Teo, C. P. (2010). Procurement risk management using options: Random spot price and the portfolio effect. IIE Transactions, 42(11), 793–811.

    Article  Google Scholar 

  • Gavirneni, S. (2004). Periodic review inventory control with fluctuating purchasing costs. Operations Research Letters, 32(4), 374–379.

    Article  Google Scholar 

  • Gayon, J. P., Benjaafar, S., & de Vericourt, F. (2009a). Using imperfect advance demand information in production–inventory systems with multiple customer classes. Manufacturing and Service Operations Management, 11(1), 128–143.

    Article  Google Scholar 

  • Gayon, J. P., Talay-Değirmenci, I., Karaesmen, F., & Örmeci, E. (2009b). Optimal pricing and production policies of a make-to-stock system with fluctuating demand. Probability in the Engineering and Informational Sciences, 23(2), 205–230.

    Article  Google Scholar 

  • Goel, A., & Gutierrez, G. (2007). Integrating commodity markets in the optimal procurement policies of a stochastic inventory system. Technical report, University of Texas-Austin.

  • Golabi, K. (1985). Optimal inventory policies when ordering prices are random. Operations Research, 33(3), 575–588.

    Article  Google Scholar 

  • Gümüş, M., Ray, S., & Gurnani, H. (2012). Supply-side story: Risks, guarantees, competition, and information asymmetry. Management Science, 58(9), 1694–1714.

    Article  Google Scholar 

  • Guo, X., Kaminsky, P., Tomecek, P., & Yuen, M. (2011). Optimal spot market inventory strategies in the presence of cost and price risk. Mathematical Methods of Operations Research, 73(1), 109–137.

    Article  Google Scholar 

  • Guttorp, P. (1995). Stochastic modeling of scientific data. London: Chapman & Hall.

    Book  Google Scholar 

  • Ha, A. Y. (1997). Inventory rationing in a make-to-stock production system with several demand classes and lost sales. Management Science, 43(8), 1093–1103.

    Article  Google Scholar 

  • Haksöz, Ç., & Seshadri, S. (2007). Supply chain operations in the presence of a spot market: A review with discussion. Journal of the Operational Research Society, 58(11), 1412–1429.

    Article  Google Scholar 

  • Kalymon, B. A. (1971). Stochastic prices in a single-item inventory purchasing model. Operations Research, 19(6), 1434–1458.

    Article  Google Scholar 

  • Kingsman, B. G. (1986). Purchasing raw materials with uncertain fluctuating prices. European Journal of Operational Research, 25(3), 358–372.

    Article  Google Scholar 

  • Lippman, S. A. (1975). Applying a new device in the optimization of exponential queuing systems. Operations Research, 23(4), 687–710.

    Article  Google Scholar 

  • Martínez de Albéniz, V., & Simchi-Levi, D. (2005). A portfolio approach to procurement contracts. Production and Operations Management, 14(1), 90–114.

    Article  Google Scholar 

  • O’Marah, K. (2009). Supply chain risk: Kanban won’t cut it. Technical report, AMR Research.

  • Özekici, S., & Parlar, M. (1999). Inventory models with unreliable suppliers in a random environment. Annals of Operations Research, 91(1), 123–136.

    Article  Google Scholar 

  • Porteus, E. (1982). Conditions for characterizing the structure of optimal strategies in infinite-horizon dynamic programs. Journal of Optimization Theory and Applications, 36(3), 419–432.

    Article  Google Scholar 

  • Porteus, E. L. (2002). Foundations of stochastic inventory theory. Stanford: Stanford University Press.

    Google Scholar 

  • Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic programming. New York: Wiley.

    Book  Google Scholar 

  • Ross, S. M. (1999). An introduction to mathematical finance: Options and other topics. New York: Cambridge University Press.

    Google Scholar 

  • Schwartz, E. S. (1997). The stochastic behavior of commodity prices: Implications for valuation and hedging. Journal of Finance, 52(3), 923–973.

    Article  Google Scholar 

  • Seifert, R. W., Thonemann, U. W., & Hausman, W. H. (2004). Optimal procurement strategies for online spot markets. European Journal of Operational Research, 152(3), 781–799.

    Article  Google Scholar 

  • Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 103(2), 451–488.

    Article  Google Scholar 

  • Vakharia, A. J., & Yenipazarlı, A. (2009). Managing supply chain disruptions. Foundations and Trends in Technology, Information and Operations Management, 2(4), 243–325.

    Article  Google Scholar 

  • Wang, Y. (2001). The optimality of myopic stocking policies for systems with decreasing purchasing prices. European Journal of Operational Research, 133(1), 153–159.

    Article  Google Scholar 

  • Yang, J., & Xia, Y. (2009). Acquisition management under fluctuating raw material prices. Production and Operations Management, 18(2), 212–225.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Nie.

Appendices

Appendix 1: Proofs of Proposition 1 and Theorems 1 and 2

Proof of Proposition 1

In this proposition, we verify that the functional operators associated with MB, SB, and DB preserve Conditions 1 and 2 stated in Definition 1. Since the verification steps for MB and SB are very similar to those for DB, here, we only provide the proof for DB.

To simplify the proof, we rewrite \(T_{\text{ DB }}\) as a linear combination of functional operators \(G\) and \(H\) as follows:

$$\begin{aligned} T_{\text{ DB }}v(x,i) = -h(x) + \lambda Gv(x,i) + \mu _i \sum _{j \ne i} \gamma _{ij} Hv(x,j) + (\overline{\mu } -\mu _i)v(x,i), \end{aligned}$$

where

$$\begin{aligned} Gv(x,i)= & {} \max _{b \ge 0} \biggl \{ (1-b)( Fv(x,i) + b)+ bv(x,i) \biggl \}, \\ Fv(x,i)= & {} \left\{ \begin{array}{ll} \max \bigl \{v(x,i)-p_i,v(x-1,i) \bigl \}, &{}\quad \text{ if }\,x \ge 1 \\ v(x,i) - p_{i}, &{}\quad \text{ if }\,x=0, \end{array} \right. \end{aligned}$$

and

$$\begin{aligned} Hv(x,j) = \max _{q \ge 0} \biggl \{ v(x+q,j)-p_j q \biggr \}. \end{aligned}$$

Now, we show that the functional operator \(T_{\text{ DB }}\) preserves Conditions 1 and 2. We divide the proof into two steps, one for each condition. In each step, we consider \(G\) and \(H\) separately and show that Conditions 1 and 2 are preserved by each one of them.

Step 1. Verification of Condition 1.

Step 1.1. Preservation of Condition 1 by \({\mathbf {G}}\). We first focus on the concavity of \(Gv(x,i)\) with respect to \(x\).

If \(x=0,\) we want to prove \(Gv(2,i) - Gv(1,i) \le Gv(1,i) - Gv(0,i),\) that is, \(\max _{b \ge 0} \bigl \{ (1-b) (\max \{v(2,i)-p_i,v(1,i) \} +b)+ bv(2,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b) (\max \{v(1,i)-p_i,v(0,i) \} +b)+ bv(1,i) \bigl \} \,\,\le \max _{b \ge 0} \bigl \{ (1-b) (\max \{v(1,i)-p_i,v(0,i) \} +b)+ bv(1,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b) (v(0,i)-p_i +b )+ bv(0,i) \bigl \}\). We consider the following four cases:

  1. Case A1.

    \(v(2,i)-p_i \ge v(1,i)\) and \(v(1,i)-p_i \ge v(0,i)\);

  2. Case A2.

    \(v(2,i)-p_i \ge v(1,i)\) and \(v(1,i)-p_i < v(0,i)\);

  3. Case A3.

    \(v(2,i)-p_i < v(1,i)\) and \(v(1,i)-p_i \ge v(0,i)\);

  4. Case A4.

    \(v(2,i)-p_i < v(1,i)\) and \(v(1,i)-p_i < v(0,i)\).

Case A1. \(\Leftrightarrow \max _{b \ge 0} \bigl \{ (1-b) (v(2,i) +b -p_i )+ bv(2,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b)( v(1,i) + b - p_i)+ bv(1,i) \bigl \}\,\le \max _{b \ge 0} \bigl \{ (1-b)( v(1,i) + b -p_i)+ bv(1,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b)(v(0,i) + b -p_i)+ bv(0,i) \bigl \}.\) \(\Leftrightarrow \max _{b \ge 0} \bigl \{ (1-b)(b-p_i)\bigl \} + v(2,i) -\max _{b \ge 0} \bigl \{ (1-b)(b-p_i) \bigl \} - v(1,i) \le \max _{b \ge 0} \bigl \{ (1-b)(b-p_i) \bigl \} + v(1,i) -\max _{b \ge 0} \bigl \{ (1-b)(b-p_i) \bigl \} - v(0,i).\) \(\Leftrightarrow v(2,i) - v(1,i) \le v(1,i) - v(0,i).\)

Case A2. This case is impossible since it contradicts with \(v(2,i)-v(1,i) \le v(1,i)-v(0,i)\).

Case A3. \(\Leftrightarrow \max _{b \ge 0} \bigl \{ (1-b)(v(1,i) +b)+ bv(2,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b) ( v(1,i) + b - p_i)+ bv(1,i) \bigl \} \,\le \max _{b \ge 0} \bigl \{ (1-b) ( v(1,i) + b -p_i)+ bv(1,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b) (v(0,i) + b - p_i) + b v(0,i)\bigl \}.\) \(\Leftrightarrow \max _{b \ge 0} \bigl \{ (1-b)b -b(v(1,i) - v(2,i)) \bigl \} \,\le \max _{b \ge 0} \bigl \{ (1-b)(b -p_i) \bigl \} + v(1,i) - v(0,i).\) As for \(\max _{b \ge 0} \bigl \{ (1-b)b -b(v(1,i) - v(2,i)) \bigl \}\), \(b^{*}= \frac{1}{2}(1-(v(1,i)-v(2,i)))\) and \(\max _{b \ge 0} \bigl \{ (1-b)b -b(v(1,i) - v(2,i)) \bigl \}= \frac{1}{4}(1-(v(1,i)-v(2,i)))^2\). As for \(\max _{b \ge 0} \bigl \{ (1-b)(b -p_i) \bigl \}\), \(b^{*}= \frac{1}{2}(1+p_i)\) and \(\max _{b \ge 0} \bigl \{ (1-b)(b -p_i) \bigl \} = \frac{1}{4}(1-p_i)^2\). Hence, \(\Leftrightarrow \frac{1}{4}(1-(v(1,i)-v(2,i)))^2 \le \frac{1}{4}(1-p_i)^2 + v(1,i) - v(0,i)\). Since \(v(2,i) - v(1,i) < p_i\) and \(1 + v(2,i) - v(1,i) \ge 1 - 1 = 0\), \(\frac{1}{4}(1-(v(1,i)-v(2,i)))^2 = \frac{1}{4}(1+v(2,i)-v(1,i))^2 \le \frac{1}{4}(1+p_i)^2\). Moreover, \(\frac{1}{4}(1-p_i)^2 + v(1,i) - v(0,i) \ge \frac{1}{4}(1-p_i)^2 + p_i = \frac{1}{4}(1 + p_i)^2.\)

Case A4. \(\Leftrightarrow \max _{b \ge 0} \bigl \{ (1-b) (v(1,i) +b)+ bv(2,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b) ( v(0,i) + b ) + bv(1,i) \bigl \}\, \le \max _{b \ge 0} \bigl \{ (1-b) ( v(0,i) + b)+ bv(1,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b) (v(0,i) + b - p_i) + b v(0,i)\bigl \}.\) \(\Leftrightarrow \max _{b \ge 0} \bigl \{ (1-b)b - b (v(1,i) - v(2,i)) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b)b - b( v(0,i) - v(1,i)) \bigl \} - (v(0,i)-v(1,i)) \,\le \max _{b \ge 0} \bigl \{ (1-b)b - b( v(0,i) - v(1,i)) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b)(b -p_i) \bigl \}.\) \(\Leftrightarrow \frac{1}{4}(1-(v(1,i)-v(2,i)))^2 - \frac{1}{4}(1-(v(0,i)-v(1,i)))^2 - (v(0,i)-v(1,i)) \le \frac{1}{4}(1-(v(0,i)-v(1,i)))^2 - \frac{1}{4}(1 - p_i)^2.\) \(\Leftrightarrow (1-(v(1,i)-v(2,i)))^2 - (1 + v(0,i)-v(1,i))^2 \le (1+v(1,i)-v(0,i))^2 - (1 - p_i)^2.\) Since \(v(2,i)-v(1,i) \le v(1,i)-v(0,i)\), \(1+v(2,i)-v(1,i) \ge 1-1=0,\) and \(1+v(1,i)-v(0,i) \ge 1- 1 = 0,\) we have \((1-(v(1,i)-v(2,i)))^2 \le (1+v(1,i)-v(0,i))^2.\) Moreover, since \(v(0,i)-v(1,i) > -p_i,\) we have \(1+v(0,i)-v(1,i)>1 - p_i \ge 0.\) Then, we have \((1 + v(0,i)-v(1,i))^2 > (1 - p_i)^2.\)

If \(x \ge 1,\) we want to prove \(Gv(x+2,i) - Gv(x+1,i) \le Gv(x+1,i) - Gv(x,i),\) that is, \(\max _{b \ge 0} \bigl \{ (1-b) (\max \{v(x+2,i)-p_i,v(x+1,i) \} +b )+ bv(x+2,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b) (\max \{v(x+1,i)-p_i,v(x,i) \} +b)+ bv(x+1,i) \bigl \} \,\le \max _{b \ge 0} \bigl \{ (1-b) (\max \{v(x+1,i)-p_i,v(x,i) \} +b)+ bv(x+1,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b) (\max \{v(x,i)-p_i,v(x-1,i) \} +b) + bv(x,i) \bigl \}.\) Since \(v(x,i)\) is concave with respect to \(x\), there exists an integer \(x^*\) such that if \(x \le x^*\), \(v(x,i)-p_i \ge v(x-1,i)\) and if \( x > x^*,\) \(v(x,i) - p_i < v(x-1,i)\). We consider the following four cases:

  1. Case B1.

    \(x \le x^* -2\);

  2. Case B2.

    \(x = x^* -1\);

  3. Case B3.

    \(x = x^*\);

  4. Case B4.

    \(x \ge x^* + 1\).

Case B1. \(\max _{b \ge 0} \bigl \{ (1-b) (v(x+2,i) +b - p_i)+ bv(x+2,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b) ( v(x+1,i) + b - p_i )+ bv(x+1,i) \bigl \} \,\le \max _{b \ge 0} \bigl \{ (1-b)( v(x+1,i) + b -p_i )+ bv(x+1,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b) (v(x,i) + b - p_i ) + b v(x,i) \bigl \}.\) \(\Leftrightarrow \max _{b \ge 0} \bigl \{ (1-b)(b-p_i) \bigl \} + v(x+2,i) - \max _{b \ge 0} \bigl \{ (1-b)(b-p_i) \bigl \} - v(x+1,i) \le \max _{b \ge 0} \bigl \{ (1-b)(b-p_i) \bigl \} + v(x+1,i) - \max _{b \ge 0} \bigl \{ (1-b)(b-p_i) \bigl \} - v(x,i).\) \(\Leftrightarrow v(x+2,i) - v(x+1,i) \le v(x+1,i) - v(x,i).\)

Case B2. \(\max _{b \ge 0} \bigl \{ (1-b)(v(x+1,i) +b)+ bv(x+2,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b)( v(x+1,i) + b - p_i)+ bv(x+1,i) \bigl \} \,\,\le \max _{b \ge 0} \bigl \{ (1-b) ( v(x+1,i) + b -p_i )+ bv(x+1,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b)(v(x,i) + b - p_i ) + b v(x,i)\bigl \}.\) \(\Leftrightarrow \max _{b \ge 0} \bigl \{ (1-b)b -b(v(x+1,i) - v(x+2,i)) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b)(b - p_i) \bigl \}\,\, \le v(x+1,i) - v(x,i).\) \(\Leftrightarrow \frac{1}{4}(1-(v(x+1,i)-v(x+2,i)))^2 - \frac{1}{4}(1-p_i)^2 \le v(x+1,i) - v(x,i).\) Since \(x+2 = x^*-1+2=x^*+1 > x^*,\) we have \(v(x+2,i)-v(x+1,i) <p_i.\) So, \(1-(v(x+1,i)-v(x+2,i)) = 1 + v(x+2,i)-v(x+1,i) < 1+p_i.\) Combining with the fact that \(1-(v(x+1,i)-v(x+2,i)) = 1 + v(x+2,i)-v(x+1,i) \ge 1 - 1 = 0,\) we have \(\frac{1}{4}(1-(v(x+1,i)-v(x+2,i)))^2 - \frac{1}{4}(1-p_i)^2 \le \frac{1}{4}(1+p_i)^2 - \frac{1}{4}(1-p_i)^2 = p_i.\) Moreover, since \(x=x^*-1,\) that is, \(x+1=x^*,\) we have \(v(x+1,i)-p_i \ge v(x,i).\) Hence, \(v(x+1,i)-v(x,i) \ge p_i.\)

Case B3. \(\max _{b \ge 0} \bigl \{ (1-b) (v(x+1,i) +b)+ bv(x+2,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b) ( v(x,i) + b )+ bv(x+1,i) \bigl \} \,\le \max _{b \ge 0} \bigl \{ (1-b) ( v(x,i) + b )+ bv(x+1,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b) (v(x,i) + b - p_i ) + b v(x,i)\bigl \}.\) \(\Leftrightarrow \max _{b \ge 0} \bigl \{ (1-b)b - b(v(x+1,i) - v(x+2,i) ) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b)b - b(v(x,i) - v(x+1,i)) \bigl \} - (v(x,i) - v(x+1,i)) \le \max _{b \ge 0} \bigl \{ (1-b)b - b(v(x,i) - v(x+1,i)) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b)(b - p_i) \bigl \}.\) \(\Leftrightarrow \frac{1}{4}(1-(v(x+1,i)-v(x+2,i)))^2 - \frac{1}{4}(1-(v(x,i)-v(x+1,i)))^2 - (v(x,i) - v(x+1,i)) \le \frac{1}{4}(1-(v(x,i)-v(x+1,i)))^2 - \frac{1}{4}(1-p_i)^2.\) \(\Leftrightarrow (1+v(x+2,i)-v(x+1,i))^2 - (1+v(x,i)-v(x+1,i))^2 \le (1+v(x+1,i)-v(x,i))^2 - (1-p_i)^2.\) Since \(v(x+2,i)-v(x+1,i) \le v(x+1,i) - v(x,i)\), \(1+v(x+2,i)-v(x+1,i) \ge 1 - 1 = 0,\) and \(1+v(x+1,i)-v(x,i) \ge 1 - 1 = 0,\) we have \((1+v(x+2,i)-v(x+1,i))^2 \le (1+v(x+1,i)-v(x,i))^2.\) Moreover, since \(v(x+1,i) - v(x,i) < p_i,\) we have \(v(x,i) - v(x+1,i) > -p_i.\) Combining with the fact that \(1 + v(x,i) - v(x+1,i) \ge 1 - p_i \ge 0\), we have \((1+v(x,i)-v(x+1,i))^2 \ge (1-p_i)^2.\)

Case B4. \(\Leftrightarrow \max _{b \ge 0} \bigl \{ (1-b) (v(x+1,i) +b)+ bv(x+2,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b)( v(x,i) + b)+ bv(x+1,i) \bigl \} \, \le \max _{b \ge 0} \bigl \{ (1-b)( v(x,i) + b)+ bv(x+1,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b) (v(x-1,i) + b) + b v(x,i)\bigl \}.\) \(\Leftrightarrow \max _{b \ge 0} \bigl \{ (1-b)b - b(v(x+1,i) - v(x+2,i)) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b)b - b(v(x,i) - v(x+1,i)) \bigl \} -(v(x,i) - v(x+1,i)) \le \max _{b \ge 0} \bigl \{ (1-b)b - b(v(x,i) - v(x+1,i)) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b)b - b(v(x-1,i) - v(x,i)) \bigl \}-(v(x-1,i) - v(x,i)).\) \(\Leftrightarrow \frac{1}{4}(1-(v(x+1,i)-v(x+2,i)))^2 - \frac{1}{4}(1-(v(x,i)-v(x+1,i)))^2 - (v(x,i) - v(x+1,i)) \le \frac{1}{4}(1-(v(x,i)-v(x+1,i)))^2 - \frac{1}{4}(1-(v(x-1,i)-v(x,i)))^2 - (v(x-1,i) - v(x,i)).\) \(\Leftrightarrow (1+v(x+2,i)-v(x+1,i))^2 - (1+v(x,i)-v(x+1,i))^2 \le (1+v(x+1,i)-v(x,i))^2 - (1+v(x-1,i)-v(x,i))^2.\) Since \(v(x+2,i) -v(x+1,i) \le v(x+1,i) - v(x,i),\) \(1+v(x+2,i)-v(x+1,i) \ge 1-1 = 0,\) and \(1+v(x+1,i)-v(x,i) \ge 1-1= 0,\) we have \((1+v(x+2,i)-v(x+1,i))^2 \le (1+v(x+1,i)-v(x,i))^2.\) Moreover, since \(v(x+1,i)-v(x,i) \le v(x,i)-v(x-1,i),\) we have \(v(x,i)-v(x+1,i) \ge v(x-1,i)-v(x,i).\) Combining with the facts that \(1+v(x,i)-v(x+1,i) \ge 0\) (since \(v(x+1,i)-p_i < v(x,i),\) we have \(v(x,i)-v(x+1,i) > -p_i.\) So, \(1+v(x,i)-v(x+1,i) > 1- p_i \ge 0\)) and \(1+v(x-1,i)-v(x,i) \ge 0\) (since \(v(x,i)-p_i < v(x-1,i),\) we have \(v(x-1,i)-v(x,i) > -p_i.\) So, \(1+v(x-1,i)-v(x,i) > 1- p_i \ge 0\)), we have \((1+v(x,i)-v(x+1,i))^2 \ge (1+v(x-1,i)-v(x,i))^2.\)

Step 1.2. Preservation of Condition 1 by \({\mathbf {H}}\). Now, we focus on the concavity of \(Hv(x,j)\) with respect to \(x\). Define

$$\begin{aligned} \tilde{H}v(x,j) = \max _{y \ge x} \bigl \{ v(y,j) - p_j y \bigl \}. \end{aligned}$$

So, \(Hv(x,j) = \tilde{H}v(x,j) + p_j x.\) Since \(p_j x\) is linear in \(x\), we focus on the concavity of \(\tilde{H}v(x,j)\) with respect to \(x\), that is, we want to prove \(\tilde{H}v(x+2,j)-\tilde{H}v(x+1,j) \le \tilde{H}v(x+1,j)-\tilde{H}v(x,j).\) Let \(y^*\) be an integer such that \(y^* = \arg \max _{y=0,1,\ldots } \bigl \{ v(y,j) -p_j y \bigl \}.\) Then, from the concavity of \(v(x,j)\) with respect to \(x\), we have

$$\begin{aligned} \tilde{H}v(x,j) = \left\{ \begin{array}{ll} v(y^*,j)-p_{j} y^*, &{}\quad \text{ if }\,y^* > x \\ v(x,j) - p_{j}x, &{}\quad \text{ if }\,y^* \le x. \end{array} \right. \end{aligned}$$

We consider the following three cases:

  1. Case C1.

    \(x \le y^* -2\);

  2. Case C2.

    \(x = y^* -1\);

  3. Case C3.

    \(x \ge y^*\).

Case C1. \(\tilde{H}v(x+2,j)-\tilde{H}v(x+1,j) = v(y^*,j)-p_j y^* - (v(y^*,j)-p_j y^*) = 0 = \tilde{H}v(x+1,j)-\tilde{H}v(x,j).\)

Case C2. \(\tilde{H}v(x+2,j)-\tilde{H}v(x+1,j) = v(y^*+1,j)-p_j (y^*+1) - (v(y^*,j)-p_j y^*) \le 0.\) The last inequality follows because of the optimality of \(y^*.\) Moreover, \(\tilde{H}v(x+1,j)-\tilde{H}v(x,j) = v(y^*,j)-p_j y^* - (v(y^*,j)-p_j y^*) = 0.\) Hence, \(\tilde{H}v(x+2,j)-\tilde{H}v(x+1,j) \le \tilde{H}v(x+1,j)-\tilde{H}v(x,j).\)

Case C3. \(\tilde{H}v(x+2,j)-\tilde{H}v(x+1,j) = v(x+2,j)-p_j (x+2) - (v(x+1,j)-p_j(x+1)) = v(x+2,j) - v(x+1,j) - p_j.\) \(\tilde{H}v(x+1,j)-\tilde{H}v(x,j) = v(x+1,j)-p_j (x+1) - (v(x,j)-p_jx) = v(x+1,j) - v(x,j) - p_j.\) Since \( v(x+2,j) - v(x+1,j) \le v(x+1,j) - v(x,j),\) we have \(\tilde{H}v(x+2,j)-\tilde{H}v(x+1,j) \le \tilde{H}v(x+1,j)-\tilde{H}v(x,j).\)

Step 1.3. Preservation of Condition 1 by \({\mathbf {T}}_{\text{ DB }}\). Summarizing the above results and observing that \(-h(x)\) is concave, we conclude that \(T_{\text{ DB }}\) preserves Condition 1, since it is the linear combination of terms that satisfy Condition 1.

Step 2. Verification of Condition 2.

Step 2.1. Preservation of Condition 2 by \({\mathbf {G}}\). First, we focus on \(Gv(x,i).\) We want to prove \(Gv(x+1,i)-Gv(x,i) \ge -1\) for \(x \in N\) and \(i \in M\).

If \(x=0\), \(Gv(1,i)-Gv(0,i) = \max _{b \ge 0} \bigl \{ (1-b) (\max \{v(1,i)-p_i,v(0,i) \} +b)+ bv(1,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b)(b-p_i) \bigl \} - v(0,i).\) We consider the following two cases:

  1. Case D1.

    \( v(1,i) - p_i \ge v(0,i)\);

  2. Case D2.

    \( v(1,i) - p_i < v(0,i)\).

Case D1. \(Gv(1,i)-Gv(0,i) = \max _{b \ge 0} \bigl \{ (1-b) (v(1,i) + b - p_i) + bv(1,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b)(b-p_i) \bigl \} - v(0,i) = v(1,i) - v(0,i) \ge -1.\)

Case D2. \(Gv(1,i)-Gv(0,i) = \max _{b \ge 0} \bigl \{ (1-b) ( v(0,i) + b ) + bv(1,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b)(b-p_i) \bigl \} - v(0,i) = \frac{1}{4}(1-(v(0,i)-v(1,i)))^2 - \frac{1}{4}(1-p_i)^2.\) Since \(v(1,i) - v(0,i) \ge -1,\) we have \(1-(v(0,i) - v(1,i)) = 1 +v(1,i) - v(0,i) \ge 1-1 = 0.\) Hence, \(\frac{1}{4}(1-(v(0,i)-v(1,i)))^2 - \frac{1}{4}(1-p_i)^2 \ge 0 - \frac{1}{4}(1-p_i)^2 = - \frac{1}{4}(1-p_i)^2 \ge -1.\)

If \(x \ge 1,\) we consider the following three cases:

  1. Case E1.

    \(x \le x^* -1\);

  2. Case E2.

    \(x = x^*\);

  3. Case E3.

    \(x \ge x^* + 1\).

Case E1. \(Gv(x+1,i)-Gv(x,i) = \max _{b \ge 0} \bigl \{ (1-b) ( v(x+1,i) + b -p_i)+ bv(x+1,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b) ( v(x,i) + b -p_i) + bv(x,i) \bigl \} = v(x+1,i) - v(x,i) \ge - 1.\)

Case E2. \(Gv(x+1,i)-Gv(x,i) = \max _{b \ge 0} \bigl \{ (1-b) ( v(x,i) + b) + bv(x+1,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b) ( v(x,i) + b -p_i) + bv(x,i) \bigl \} = \frac{1}{4}(1-(v(x,i)-v(x+1,i)))^2 - \frac{1}{4}(1-p_i)^2.\) Since \(v(x+1,i) - v(x,i) \ge -1,\) we have \(1-(v(x,i) - v(x+1,i)) = 1 +v(x+1,i) - v(x,i) \ge 1-1=0.\) Hence, \(\frac{1}{4}(1-(v(x,i)-v(x+1,i)))^2 - \frac{1}{4}(1-p_i)^2 \ge 0 - \frac{1}{4}(1-p_i)^2 = - \frac{1}{4}(1-p_i)^2 \ge -1.\)

Case E3. \(Gv(x+1,i)-Gv(x,i) = \max _{b \ge 0} \bigl \{ (1-b) ( v(x,i) + b) + bv(x+1,i) \bigl \} - \max _{b \ge 0} \bigl \{ (1-b) ( v(x-1,i) + b ) + bv(x,i) \bigl \}\, =\frac{1}{4}(1-(v(x,i)-v(x+1,i)))^2 - \frac{1}{4}(1-(v(x-1,i)-v(x,i)))^2 - (v(x-1,i) - v(x,i))=\frac{1}{4}(1-(v(x,i)-v(x+1,i)))^2 - \frac{1}{4}(1+v(x-1,i)-v(x,i))^2.\) Since \(v(x+1,i)-v(x,i) \ge -1,\) we have \(1+v(x+1,i)-v(x,i) \ge 1- 1 = 0.\) Hence, \(\frac{1}{4}(1-(v(x,i)-v(x+1,i)))^2 = \frac{1}{4}(1+v(x+1,i)-v(x,i))^2 \ge 0.\) Moreover, since \(v(x+1,i)-v(x,i) \ge -1\) and \(v(x+1,i)-v(x,i) \le v(x,i) - v(x-1,i),\) we have \(v(x,i)-v(x-1,i) \ge -1,\) that is, \(v(x-1,i)-v(x,i) \le 1.\) Since \(0 \le 1-p_i \le 1 + v(x-1,i)-v(x,i) \le 1+1 =2,\) we have \(\frac{1}{4}(1+v(x-1,i)-v(x,i))^2 \le \frac{1}{4} \times 2^2 = 1.\) Hence, \(Gv(x+1,i)-Gv(x,i) \ge 0 - 1 = -1.\)

Step 2.2. Preservation of Condition 2 by \({\mathbf {H}}\). Here, we focus on \(Hv(x,j).\) We want to prove \(Hv(x+1,j)-Hv(x,j) \ge -1\) for \(x \in N\) and \(i \in M\). We consider the following two cases:

  1. Case F1.

    \(x \le y^* -1\);

  2. Case F2.

    \(x \ge y^*\).

Case F1. \(Hv(x+1,j)-Hv(x,j) = v(y^*,j) - p_jy^* + p_j(x+1)-(v(y^*,j) - p_jy^* + p_jx) = p_j \ge -1.\)

Case F2. \(Hv(x+1,j)-Hv(x,j) = v(x+1,j) - p_j(x+1) + p_j(x+1)-(v(x,j) - p_jx + p_jx) = v(x+1,j) -v(x,j) \ge -1.\)

Step 2.3. Preservation of Condition 2 by \({\mathbf {T}}_{\text{ DB }}\). In conclusion,

$$\begin{aligned} T_{\text{ DB }}v(x+1,i) - T_{\text{ DB }}v(x,i)\ge & {} -h(x+1)-(-h(x)) + \lambda (-1) \\&+ \mu _i \sum _{j \ne i} \gamma _{ij} (-1) + (\overline{\mu }-\mu _i)(-1) \\= & {} -(h(x+1)-h(x)) + (\lambda + \overline{\mu })(-1) \\\ge & {} - \alpha + (\lambda + \overline{\mu })(-1) = (\alpha + \lambda + \overline{\mu })(-1) = -1. \end{aligned}$$

Proof of Theorem 1

Since the results follow from the concavity of \(V_{\text{ I }}\), we only need to prove \(V_{\text{ I }} \in {\mathcal {V}}.\) This can be easily shown by using the facts that (i) \( V_{\text{ I }} = \lim _{n \rightarrow \infty } T^n_{\text{ I }} v\) for any \(v\) in \({\mathcal {V}}\), where \(T^n_{\text{ I }}\) is the \(n\)-fold composition of \(T_{\text{ I }}\) for \(\text{ I } \in \{\text{ MB, } \text{ SB, } \text{ DB }\}\) and (ii) \(V_{\text{ I }}\) is the unique solution of \(v = T_{\text{ I }}v\) (see Theorem 5.1 of Porteus 1982 and Theorem 6.10.4 of Puterman 1994).

Proof of Theorem 2

Recall that

$$\begin{aligned} T_{\text{ DB }}v(x,i) = -h(x) + \lambda Gv(x,i) + \mu _i \sum _{j \ne i} \gamma _{ij} Hv(x,j) + (\overline{\mu } -\mu _i)v(x,i), \end{aligned}$$

where

$$\begin{aligned} Gv(x,i)= & {} \max _{b \ge 0} \biggl \{ (1-b)( Fv(x,i) + b)+ bv(x,i) \biggl \}, \\ Fv(x,i)= & {} \left\{ \begin{array}{ll} \max \bigl \{v(x,i)-p_i,v(x-1,i) \bigl \}, &{}\quad \text{ if }\, x \ge 1 \\ v(x,i) - p_{i}, &{}\quad \text{ if }\, x=0, \end{array} \right. \end{aligned}$$

and

$$\begin{aligned} Hv(x,j) = \max _{q \ge 0} \biggl \{ v(x+q,j)-p_j q \biggr \}. \end{aligned}$$

Note that the optimal bid prices are determined by the maximization of \((1-b)(FV_{\text{ DB }}(x,i) +b)+ bV_{\text{ DB }}(x,i)\) with respect to \(b\). Let \(Z(b,x) = (1-b)(FV_{\text{ DB }}(x,i) +b)+ bV_{\text{ DB }}(x,i)\). To prove the monotonicity of the optimal bid prices with respect to the inventory level, it suffices to show \(Z(b^{'},x+1)-Z(b^{'},x) \le Z(b,x+1) - Z(b,x)\) for all \(x \ge 0\) and \(1 \ge b^{'} \ge b \ge 0.\)

If \(x=0,\) we want to prove \(Z(b^{'},1)-Z(b^{'},0) \le Z(b,1) - Z(b,0)\), that is, \((1-b^{'})(FV_{\text{ DB }}(1,i)+b^{'}) + b^{'}V_{\text{ DB }}(1,i) - (1-b^{'})(FV_{\text{ DB }}(0,i)+b^{'}) - b^{'}V_{\text{ DB }}(0,i) \le (1-b)(FV_{\text{ DB }}(1,i)+b) + bV_{\text{ DB }}(1,i) - (1-b)(FV_{\text{ DB }}(0,i)+b) - bV_{\text{ DB }}(0,i).\) We consider the following two cases:

  1. Case G1.

    \(V_{\text{ DB }}(1,i)-p_i \ge V_{\text{ DB }}(0,i)\);

  2. Case G2.

    \(V_{\text{ DB }}(1,i)-p_i < V_{\text{ DB }}(0,i)\).

Case G1. \(\Leftrightarrow (1-b^{'})(V_{\text{ DB }}(1,i) - p_i + b^{'}) + b^{'}V_{\text{ DB }}(1,i) - (1-b^{'})(V_{\text{ DB }}(0,i)-p_i+b^{'}) - b^{'}V_{\text{ DB }}(0,i) \le (1-b)(V_{\text{ DB }}(1,i) - p_i + b) + bV_{\text{ DB }}(1,i) - (1-b)(V_{\text{ DB }}(0,i)-p_i+b) - bV_{\text{ DB }}(0,i).\) \(\Leftrightarrow V_{\text{ DB }}(1,i) - V_{\text{ DB }}(0,i) \le V_{\text{ DB }}(1,i) - V_{\text{ DB }}(0,i).\)

Case G2. \(\Leftrightarrow (1-b^{'})(V_{\text{ DB }}(0,i) + b^{'}) + b^{'}V_{\text{ DB }}(1,i) - (1-b^{'})(V_{\text{ DB }}(0,i)-p_i+b^{'}) - b^{'}V_{\text{ DB }}(0,i) \le (1-b)(V_{\text{ DB }}(0,i) + b) + bV_{\text{ DB }}(1,i) - (1-b)(V_{\text{ DB }}(0,i)-p_i+b) - bV_{\text{ DB }}(0,i).\) \(\Leftrightarrow b^{'}(V_{\text{ DB }}(1,i)-V_{\text{ DB }}(0,i)-p_i) + p_i \le b(V_{\text{ DB }}(1,i)-V_{\text{ DB }}(0,i)-p_i) + p_i.\) \(\Leftrightarrow b^{'} \ge b.\)

If \(x \ge 1,\) we want to prove \(Z(b^{'},x+1)-Z(b^{'},x) \le Z(b,x+1) - Z(b,x)\), that is, \((1-b^{'})(FV_{\text{ DB }}(x+1,i)+b^{'}) + b^{'}V_{\text{ DB }}(x+1,i) - (1-b^{'})(FV_{\text{ DB }}(x,i)+b^{'}) - b^{'}V_{\text{ DB }}(x,i) \le (1-b)(FV_{\text{ DB }}(x+1,i)+b) + bV_{\text{ DB }}(x+1,i) - (1-b)(FV_{\text{ DB }}(x,i)+b) - bV_{\text{ DB }}(x,i).\) From the proof of Theorem 1, \(V_{\text{ DB }}(x,i)\) is concave with respect to \(x\). Hence, there exists an integer \(x^{*}\) such that for \(x \ge 1,\)

$$\begin{aligned} FV_{\text{ DB }}(x,i) = \left\{ \begin{array}{ll} V_{\text{ DB }}(x,i)-p_i, &{}\quad \text{ if }\,x \le x^{*} \\ V_{\text{ DB }}(x-1,i), &{}\quad \text{ if }\,x > x^{*}. \end{array} \right. \end{aligned}$$

We consider the following three cases:

  1. Case H1.

    \(x \le x^{*}-1\);

  2. Case H2.

    \(x = x^{*}\);

  3. Case H3.

    \(x \ge x^{*}+1.\)

Case H1. \(\Leftrightarrow (1-b^{'})(V_{\text{ DB }}(x+1,i) - p_i +b^{'}) + b^{'}V_{\text{ DB }}(x+1,i) - (1-b^{'})(V_{\text{ DB }}(x,i) -p_i + b^{'}) - b^{'}V_{\text{ DB }}(x,i) \le (1-b)(V_{\text{ DB }}(x+1,i)- p_i +b) + bV_{\text{ DB }}(x+1,i) - (1-b)(V_{\text{ DB }}(x,i) - p_i +b) - bV_{\text{ DB }}(x,i).\) \(\Leftrightarrow V_{\text{ DB }}(x+1,i) - V_{\text{ DB }}(x,i) \le V_{\text{ DB }}(x+1,i) - V_{\text{ DB }}(x,i).\)

Case H2. \(\Leftrightarrow (1-b^{'})(V_{\text{ DB }}(x,i)+b^{'}) + b^{'}V_{\text{ DB }}(x+1,i) - (1-b^{'})(V_{\text{ DB }}(x,i) -p_i + b^{'}) - b^{'}V_{\text{ DB }}(x,i) \le (1-b)(V_{\text{ DB }}(x,i)+b) + bV_{\text{ DB }}(x+1,i) - (1-b)(V_{\text{ DB }}(x,i) - p_i +b) - bV_{\text{ DB }}(x,i).\) \(\Leftrightarrow b^{'}(V_{\text{ DB }}(x+1,i)-V_{\text{ DB }}(x,i)) + (1-b^{'})p_i \le b(V_{\text{ DB }}(x+1,i)-V_{\text{ DB }}(x,i)) + (1-b)p_i.\) \(\Leftrightarrow b^{'}(V_{\text{ DB }}(x+1,i)-V_{\text{ DB }}(x,i)-p_i) \le b(V_{\text{ DB }}(x+1,i)-V_{\text{ DB }}(x,i) - p_i).\) Since \(x+1=x^{*}+1 > x^{*},\) we have \(V_{\text{ DB }}(x+1,i)-V_{\text{ DB }}(x,i)-p_i < 0.\) Hence, \(\Leftrightarrow b^{'} \ge b.\)

Case H3. \(\Leftrightarrow (1-b^{'})(V_{\text{ DB }}(x,i)+b^{'}) + b^{'}V_{\text{ DB }}(x+1,i) - (1-b^{'})(V_{\text{ DB }}(x-1,i) + b^{'}) - b^{'}V_{\text{ DB }}(x,i) \le (1-b)(V_{\text{ DB }}(x,i)+b) + bV_{\text{ DB }}(x+1,i) - (1-b)(V_{\text{ DB }}(x-1,i)+b) - bV_{\text{ DB }}(x,i).\) \(\Leftrightarrow V_{\text{ DB }}(x,i) - V_{\text{ DB }}(x-1,i) + b^{'}(V_{\text{ DB }}(x-1,i) - V_{\text{ DB }}(x,i) - V_{\text{ DB }}(x,i) + V_{\text{ DB }}(x+1,i)) \le V_{\text{ DB }}(x,i) - V_{\text{ DB }}(x-1,i) + b(V_{\text{ DB }}(x-1,i) - V_{\text{ DB }}(x,i) - V_{\text{ DB }}(x,i) + V_{\text{ DB }}(x+1,i)).\) \(\Leftrightarrow b^{'}(V_{\text{ DB }}(x-1,i) - V_{\text{ DB }}(x,i) - V_{\text{ DB }}(x,i) + V_{\text{ DB }}(x+1,i)) \le b(V_{\text{ DB }}(x-1,i) - V_{\text{ DB }}(x,i) - V_{\text{ DB }}(x,i) + V_{\text{ DB }}(x+1,i)).\) From the proof of Theorem 1, \(V_{\text{ DB }}(x,i)\) is concave with respect to \(x\), that is, \(V_{\text{ DB }}(x+1,i)-V_{\text{ DB }}(x,i) \le V_{\text{ DB }}(x,i) - V_{\text{ DB }}(x-1,i).\) So, \(V_{\text{ DB }}(x-1,i) - V_{\text{ DB }}(x,i) - V_{\text{ DB }}(x,i) + V_{\text{ DB }}(x+1,i) \le 0.\) Hence, \(\Leftrightarrow b^{'} \ge b.\)

Appendix 2. Tables for the other commodities: food index, oil, and platinum

See Tables 7891011, 121314151617, and 18

Table 7 Average profit rate comparison results for all strategies: food index
Table 8 Average profit rate comparison results for all strategies: oil
Table 9 Average profit rate comparison results for all strategies: platinum
Table 10 Base-stock levels comparison results for MB, SB, and DB strategies: food index
Table 11 Base-stock levels comparison results for MB, SB, and DB strategies: oil
Table 12 Base-stock levels comparison results for MB, SB, and DB strategies: platinum
Table 13 Average bid price and average inventory comparison results for all strategies: food index
Table 14 Average bid price and average inventory comparison results for all strategies: oil
Table 15 Average bid price and average inventory comparison results for all strategies: platinum
Table 16 Average total profit comparison results for all strategies using real data: food index
Table 17 Average total profit comparison results for all strategies using real data: oil
Table 18 Average total profit comparison results for all strategies using real data: platinum

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, X., Boyacı, T., Gümüş, M. et al. Joint procurement and demand-side bidding strategies under price volatility. Ann Oper Res 257, 121–165 (2017). https://doi.org/10.1007/s10479-015-1838-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1838-0

Keywords

Navigation