Skip to main content

Advertisement

Log in

Acceleration strategies of Benders decomposition for the security constraints power system expansion planning

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Nowadays the power generation and transmission are substantial elements for the society, and will definitely play a more important role in the future. In this paper a modeling framework is presented to analyze security constrained composite generation and transmission expansion planning problem in power systems. Despite of the traditional expansion planning approaches where only supply side options are considered, the proposed approach accounts for both supply and demand side management (DSM) options simultaneously. DSM options are incorporated to correct the shape of the load duration curve in terms of peak clipping and load shifting programs. A mixed integer non-linear programming model is developed to find the optimal location and timing of electricity generation/transmission as well as DSM options while the effect of transmission losses are also taken into account. Nonlinearity of the transmission loss terms is eliminated using the piecewise linearization. Motivating from the structure of the model, Benders decomposition (BD) algorithm is devised. Three effective strategies named: valid inequalities, multiple generation cuts and strong high density cut are also employed to improve the convergence of the proposed BD algorithm. The performance of the accelerated BD algorithm is validated via applying it to the modified 6, 21, 48, 57, 118 and 300 bus IEEE reliability test systems. The computational experiments ensure the practicality of the proposed BD algorithm in terms of decreasing the number of iterations and CPU times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alguacil, N., Motto, A. L., & Conejo, A. J. (2003). Transmission expansion planning: A mixed-integer LP approach. IEEE Transactions on Power Systems, 8(3), 1070–1077.

    Article  Google Scholar 

  • AlKhal, F., Chedid, R., Itani, Z., & Karam, T. (2006). An assessment of the potential benefits from integrated electricity capacity planning in the northern Middle East region. Energy, 31(13), 2316–2324.

    Article  Google Scholar 

  • Alvarez López, J., Ponnambalam, K., & Quintana, V. H. (2006). Generation and transmission expansion under uncertainty in the regulated electricity industry, Technical Report UWECE2006-17, Waterloo, Ontario, Canada.

  • Azad, N., Saharidis, G. K. D., Davoudpour, H., Malekly, H., & Yektamaram, S. A. (2013). Strategies for protecting supply chain networks against facility and transportation disruptions: An improved Benders decomposition approach. Annals of Operations Research, 210(1), 125–163.

    Article  Google Scholar 

  • Becerra-Lopez, H. R., & Golding, P. (2008). Multi-objective optimization for capacity expansion of regional power-generation systems: Case study of far west Texas. Energy Conversion and Management, 49, 1433–1445.

    Article  Google Scholar 

  • Benders, J. F. (1962). Partitioning methods for solving mixed variables programming problems. Numerische Mathematik, 4, 238–252.

    Article  Google Scholar 

  • Binato, S., Veiga, M., Pereira, F., & Granville, S. (2001). A new Benders decomposition approach to solve power transmission network design problems. IEEE Transactions on Power Systems, 16(2), 235–240.

    Article  Google Scholar 

  • Bulent, T. O., Nezih Guven, A., & Shahidehpour, M. (2008). Congestion-driven transmission planning considering the impact of generator expansion. IEEE Transactions on Power Systems, 23(2), 781–789.

    Article  Google Scholar 

  • Castillo, E., Conejo, A. J., Pedregal, P., García, R., & Alguacil, N. (2001). Building and solving mathematical programming models in engineering and science (1st ed.). New York: Wiley.

    Book  Google Scholar 

  • Cordeau, J. F., Soumis, F., & Desrosiers, J. (2000). A Benders decomposition approach for the locomotive and car assignment problem. Transportation Science, 34(2), 133–149.

    Article  Google Scholar 

  • Cordeau, J. F., Pasin, F., & Solomon, M. M. (2006). An integrated model for logistics network design. Annals of Operations Research, 144(1), 59–82.

    Article  Google Scholar 

  • Cote, G., & Laughton, M. (1984). Large-scale mixed integer programming: Benders-type heuristics. European Journal of Operational Research, 16, 327–333.

    Article  Google Scholar 

  • Dahman, S. R., Patten, K. J., Anthony, M., & Visnesky, J. (2007). Large-scale integration of wind generation including network temporal security analysis. IEEE Transactions on Energy Conversion, 22(1), 181–188.

  • Das, P. K., Chanda, R. S., & Bhattacharjee, P. K. (2005). Combined generation and transmission system expansion planning using implicit enumeration and linear programming technique. IE(I) Journal-EL, 89, 110–116.

    Google Scholar 

  • Feng, X., Liao, Y., Pan, J., & Brown, R. E. (2003). An application of genetic algorithms to integrate system expansion optimization. IEEE Power Engineering Society General Meeting, Raleigh, NC, USA, pp. 741–746.

  • Gellings, C. W. (1985). The concept of demand-side management for electric utilities. IEEE Conference, 73(10), 1468–1470.

    Google Scholar 

  • Haddadian, H., Hosseini, S. H., Shayeghi, H., & Shayanfar, H. A. (2011). Determination of optimum generation level in DTEP using a GA-based quadratic programming. Energy Conversion and Management, 52, 382–390.

    Article  Google Scholar 

  • Hamming, R. W. (1950). Error detecting and error correcting codes. Bell System Technical Journal, 9, 147–160.

    Article  Google Scholar 

  • Hiriant-Urruty, J. B., & Lemarechal, C. (1996). Convex analysis and minimization algorithm II (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Hobbs, B. F. (1995). Optimisation methods for electric utility resource planning. European Journal of Operational Research, 83(1), 1–20.

    Article  Google Scholar 

  • Huang, Y. H., & Wu, J. H. (2008). A portfolio risk analysis on electricity supply planning. Energy Policy, 36, 627–641.

    Article  Google Scholar 

  • Jenabi, M., Fatemi Ghomi, S. M. T., Torabi, S. A., & Hosseinian, S. H. (2013). A Benders decomposition algorithm for a multi-area, multistage integrated resource planning in power systems. Journal of Operational Research Society (JORS), 64, 1118–1136.

    Article  Google Scholar 

  • Kamalinia, S., Shahidehpour, M., & Khodaei, A. (2010). Security-constrained expansion planning of fast-response units for wind integration. Electric Power Systems Research, 81(1), 107–116.

    Article  Google Scholar 

  • Kannan, S., Baskar, S., McCalley, J. D., & Murugan, P. (2009). Application of NSGA-II algorithm to generation expansion planning. IEEE Transactions on Power Systems, 24(1), 454–461.

    Article  Google Scholar 

  • Kucukyazic, B., Ozdamar, L., & Pokharel, S. (2005). Developing concurrent investment plans for power generation and transmission. European Journal of Operational Research, 166, 449–468.

    Article  Google Scholar 

  • Linderoth, J. T., & Wright, S. J. (2003). Implementing a decomposition algorithm for stochastic programming on a computational grid. Computational Optimization and Applications, 24, 207–250.

    Article  Google Scholar 

  • Liu, G., Sasaki, H., & Yorino, N. (2001). Application of network topology to long range composite expansion planning of generation and transmission lines. Electric Power Systems Research, 57, 157–162.

    Article  Google Scholar 

  • Magnanti, T., & Wong, R. (1981). Accelerating Benders decomposition algorithmic enhancement and model selection criteria. Operations Research, 29, 464–484.

    Article  Google Scholar 

  • McDaniel, D., & Devine, M. (1977). A modified Benders partitioning algorithm for mixed integer programming. Management Science, 24, 312–319.

    Article  Google Scholar 

  • Murugan, P., Kannan, S., & Baskar, S. (2009). NSGA-II algorithm for multi-objective generation expansion planning problem. Electric Power Systems Research, 79(4), 622–628.

    Article  Google Scholar 

  • Papadakos, N. (2008). Practical enhancement to the Magnanti–Wang method. Operations Research Letters, 36, 444–449.

    Article  Google Scholar 

  • Pereira, S., Ferreira, P., Ismael, A., & Vaz, F. (2013). Electricity planning in a mixed hydro-thermal-wind power system. Sustainable Electricity Power Planning, Report 2/2011, 4710–4757.

  • Poojari, C. A., & Beasley, J. E. (2009). Improving benders decomposition using a genetic algorithm. European Journal of Operational Research, 199, 89–97.

    Article  Google Scholar 

  • Rei, W., Gendreau, M., Cordeau, J. F., & Soriano, P. (2009). Accelerating Benders decomposition by local branching. INFORMS Journal on Computing, 21(2), 333–345.

    Article  Google Scholar 

  • Ruszczynski, A. (1986). A regularized decomposition method for minimizing a sum of polyhedral functions. Mathematical Programming, 35, 309–333.

    Article  Google Scholar 

  • Saharidis, G. K. D., Minoux, M., & Dallery, Y. (2009). Scheduling of loading and unloading of crude oil in a refinery using event-based discrete time formulation. Computers and Chemical Engineering, 33(8), 1413–1426.

    Article  Google Scholar 

  • Saharidis, G. K. D., Minoux, M., & Ierapetritou, M. G. (2010). Accelerating Benders method using covering cut bundle generation. International Transactions in Operational Research, 17(2), 221–237.

    Article  Google Scholar 

  • Saharidis, G. K. D., & Ierapetritou, M. G. (2010). Improving Benders decomposition using maximum feasible subsystem (MFS) cut generation strategy. Computers and Chemical Engineering, 8(34), 1237–1245.

    Article  Google Scholar 

  • Saharidis, G. K. D., Boile, M., & Theofanis, S. (2011). Initialization of the Benders master problem using valid inequalities applied to fixed-charge network problems. Expert Systems with Applications, 38(6), 6627–6636.

    Article  Google Scholar 

  • Saharidis, G. K. D., & Ierapetritou, M. G. (2013). Speed-up Benders decomposition using maximum density cut (MDC) generation. Annals of Operations Research, 210(1), 101–123.

    Article  Google Scholar 

  • Santoso, T., Ahmed, S., Goetschalckx, M., & Shapiro, A. (2005). A stochastic programming approach for supply chain network design under uncertainty. European Journal of Operational Research, 167, 96–115.

    Article  Google Scholar 

  • Seifi, H., Sepasian, M. S., Haghighat, H., Foroud, A. A., Yousefi, G. R., & Rae, S. (2007). Multi-voltage approach to long-term network expansion planning. IET Generation, Transmission, Distribution, 1, 826–835.

    Article  Google Scholar 

  • Sepasian, M. S., Seifi, H., Akbari Foroud, A., & Hatami, A. R. (2009). A multiyear security constrained hybrid generation-transmission expansion planning algorithm including fuel supply costs. IEEE Transactions on Power Systems, 24(3), 1609–1618.

    Article  Google Scholar 

  • Sherali, H. F., & Lunday, B. J. (2011). On generating maximal non dominated Benders cuts. Annals of Operations Research,. doi:10.1007/s10479-011-0883-6.

    Google Scholar 

  • Sirikum, J., Techanitisawad, A., & Kachitvichyanukul, V. (2007). A new efficient GA-Benders’ decomposition method: For power generation expansion planning with emission controls. IEEE Transactions on Power Systems, 22(3), 1092–1100.

    Article  Google Scholar 

  • Stoll, H. G. (1989). Least-cost electric utility planning. New York: Wiley.

    Google Scholar 

  • Tang, L., Jiang, W., & Saharidis, G. K. D. (2013). An improved benders decomposition algorithm for the logistic facility location problem with capacity expansion. Annals of Operation Research, 210(1), 165–190.

    Article  Google Scholar 

  • Unsihuay-Vila, C., Marangon-Lima, J. W., Souza, A. C. Z., Perez-Arriaga, I. J., & Balestrassi, P. P. (2010). A model to long-term, multi-area, multistage, and integrated expansion planning of electricity and natural gas systems. IEEE Transactions on Power Systems, 25(2), 1154–1168.

    Article  Google Scholar 

  • Unsihuay-Vila, C., Marangon-Lima, J. W., Souza, A. C. Z., & Perez-Arriaga, I. J. (2011). Multistage expansion planning of generation and interconnections with sustainable energy development criteria: A multi-objective model. Electrical Power and Energy Systems, 33(2), 258–270.

    Article  Google Scholar 

  • Zhou, M., Li, G., & Zhang, P. (2006). Impact of demand side management on composite generation and transmission system reliability. PSCE conference, North China Electr. Power Univ., Baoding, pp. 819–824.

  • Zakeri, G., Philpott, A. B., & Ryan, D. M. (1998). Inexact cuts in benders decomposition. SIAM Journal on Optimization, 10(3), 643–657.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. T. Fatemi Ghomi.

Appendices

Appendix 1

Not with standing extensive literature about expansion planning of power systems (specifically on TEP), most of the time, transmission losses and its effect on expansion planning has been disregarded due to non-linear relationship between the transmission loss and the power flow. Usually, this non-linear term is approximated by a linear function. Alguacil et al. (2003) proposed a large-scale, mixed-integer, nonlinear and non-convex model for long-term transmission expansion planning problem. They derived a mixed-integer linear formulation through applying piecewise linear function to linearize nonlinear term corresponding to transmission losses.

This appendix describes how transmission losses are dealt with in the proposed mathematical programming model presented in Sect. 2. Similar with (Alguacil et al. 2003), the fraction of power lost on a type l or \(l' \) lines connecting nodes i and j at stag t is considered to be a function of line type and power flow. Therefore, loss-adjusted power inflow for candidate,\(\mathcal {L}\left( {f_{\ell ,j,i,m}^{t,{l}'} } \right) \), and existing,\(\mathcal {L}\left( {f_{j,i,m}^{t,l} } \right) \), lines are presented in the Eqs. (65) and (66), respectively.

$$\begin{aligned}&\mathcal {L}\left( {f_{j,i,m}^{t,l} } \right) = f_{j,i,m}^{t,l} -\mathcal {E}_{i,j}^l .N_{i,j}^l .\left( {\theta _{m,j}^t -\theta _{m,i}^t } \right) ^{2} \quad \hbox {For existing lines} \end{aligned}$$
(65)
$$\begin{aligned}&\mathcal {L}\left( {f_{\ell ,j,i,m}^{t,{l}'} } \right) = f_{\ell ,j,i,m}^{t,{l}'} -\mathcal {E}_{i,j}^{{l}'} .\left( {\theta _{m,j}^t -\theta _{m,i}^t } \right) ^{2} \quad \hbox {For candidate lines} \end{aligned}$$
(66)

Substituting \(\theta _{m,j}^t -\theta _{m,i}^t\) from Eqs. (4) and (5), the loss terms can be rewritten as:

$$\begin{aligned}&\mathcal {L}\left( {f_{j,i,m}^{t,l} } \right) = f_{j,i,m}^{t,l} -\frac{\mathcal {E}_{i,j}^l }{N_{i,j}^l .\left( {\Gamma _{i,j}^l } \right) ^{2}}.\left( {f_{j,i,m}^{t,l} } \right) ^{2} \quad \hbox {For existing lines}\end{aligned}$$
(67)
$$\begin{aligned}&\mathcal {L}\left( {f_{\ell ,j,i,m}^{t,{l}'} } \right) = f_{\ell ,j,i,m}^{t,{l}'} -\frac{\mathcal {E}_{i,j}^{{l}'} }{\left( {\Gamma _{i,j}^{{l}'} } \right) ^{2}}.\left( {f_{\ell ,j,i,m}^{t,{l}'} } \right) ^{2} \quad \hbox {For candidate lines} \end{aligned}$$
(68)
Fig. 3
figure 3

Piecewise linearization technique per existing line loss function

Appendix 2

The quadratic terms in the Eq. (2) and product of discrete and continuous variables in Eq. (5) make the proposed model to be nonlinear. In this appendix we describe how these nonlinear terms can be converted to linear ones.

Since the flow on lines of type l and \(l'\) are bounded within the intervals \(\left[ {-N_{i,j}^l .\bar{{f}}_{i,j}^l }, \right. \left. {N_{i,j}^l .\bar{{f}}_{i,j}^l } \right] \) and \(\left[ {\left. {-\bar{{f}}_{\ell ,i,j}^{{l}'} ,\bar{{f}}_{\ell ,i,j}^{{l}'} } \right] } \right. \), a linear approximation of quadratic terms \(\left( {f_{j,i,m}^{t,l} } \right) ^{2}\) and \(\left( {f_{\ell ,j,i,m}^{t,{l}'} } \right) ^{2}\) can be obtained by partitioning these intervals into the 2s smaller intervals \((s = 1, 2, \ldots , 2L')\) as shown in Fig. 3.

Using this technique, 2s new variables should be introduced to linearize the model. The same result may be obtained using only \(s+ 2\) variables if we only focus on the positive area. Therefore, the quadratic terms in Eq. (2) can be approximated as follows:

$$\begin{aligned} \begin{array}{ll@{\quad }l} \hbox {For existing lines}&{} \hbox {For new lines} &{}\\ \left| {f_{i,j,m}^{t.l} } \right| = \sum _{s=1,\ldots ,{L}'} {pf_{i,j,m}^{t,l,s} } &{} \left| {f_{\ell ,i,j,m}^{t,{l}'} } \right| = \sum _{s=1,\ldots ,{L}'} {pf_{\ell ,i,j,m}^{t,{l}',s} } &{} (69)\\ \left( {f_{i,j,m}^{t,l} } \right) ^{2}\approx \sum _{s=1,\ldots ,{L}'} {m^{l,s}.pf_{i,j,m}^{t,l,s} }&{}\left( {f_{\ell ,i,j,m}^{t,{l}'} } \right) ^{2}\approx \sum _{s=1,\ldots ,{L}'} {m^{{l}',s}.pf_{\ell ,i,j,m}^{t,{l}',s} }&{} (70)\\ pf_{i,j,m}^{t,l,s} \le \left( {a_s -a_{s-1} } \right) .N_{i,j}^l .\bar{{f}}_{i,j}^l ; s=1,\ldots ,{L}' &{} pf_{\ell ,i,j,m}^{t,{l}',s} \le \left( {a_s -a_{s-1} } \right) .Y_{\ell ,i,j}^{t,{l}'} .\bar{{f}}_{i,j}^{{l}'} ; s=1,\ldots ,{L}'&{} (71)\\ pf_{i,j,m}^{t,l,s} \ge 0; s=1,\ldots ,{L}' &{} pf_{\ell ,i,j,m}^{t,{l}',s} \ge 0; s=1,\ldots ,{L}' &{} (72)\\ m^{l,s}= \frac{a_s^2 -a_{s-1}^2 }{a_s -a_{s-1} }.N_{i,j}^l .\bar{{f}}_{i,j}^l &{} m^{{l}',s}= \frac{a_s^2 -a_{s-1}^2 }{a_s -a_{s-1} }.\bar{{f}}_{i,j}^{{l}'} &{} (73) \end{array} \end{aligned}$$

where, \(a_{s}\), \(m^{l,s}\), \(m^{{l}',s}\), \(pf_{i,j,m}^{t,l,s} \) and \(pf_{\ell ,i,j,m}^{t,{l}',s} \) represent coefficients (%), slops and flow magnitudes of sth interval for the existing and new transmission lines, respectively. Linear expression of the absolute value in the Eq. (69) is required which is obtained through the following substitution (Castillo et al. 2001):

$$\begin{aligned} \begin{array}{lll} \hbox {For existing lines}&{}\hbox {For new lines}&{}\\ \left| {f_{\ell ,j,i,m}^{{l}'} } \right| = f_{\ell ,j,i,m}^{+{l}'} +f_{\ell ,j,i,m}^{-{l}'}&{} \left| {f_{j,i,m}^l } \right| = f_{j,i,m}^{+l} +f_{j,i,m}^{-l}&{}\qquad (74)\\ f_{j,i,m}^l = f_{j,i,m}^{+l} -f_{j,i,m}^{-l} &{} f_{\ell ,j,i,m}^{{l}'} = f_{\ell ,j,i,m}^{+{l}'} -f_{\ell ,j,i,m}^{-{l}'}&{}\qquad (75)\\ \end{array} \end{aligned}$$

The modified form of Eqs. (2) and (4)–(7) are presented in Eqs. (76)–(83). These modified constraints are replaced with corresponding ones in the constraint sets of (2)–(20), also Eqs. (72) and (73) are added to the constraint sets of (2)–(20).

$$\begin{aligned}&\mathop \sum \limits _{ \mathop {j|\left( {i,j} \right) \in \textit{NN}_T ,} \limits ^ {l^{\prime }\in \textit{LN},l} }\left[ {f_{\ell ,j,i,m}^{+t,{l}'} -f_{\ell ,j,i,m}^{-t,{l}'} -\sum _s {r_{j,i}^{{l}',s} .pf_{\ell ,j,i,m}^{t,{l}',s} } } \right] \nonumber \\&\qquad +\mathop \sum \limits _{ \mathop {j|\left( {i,j} \right) \in \textit{NE}_T ,} \limits ^ {l\in \textit{LE}} } \left[ {f_{j,i,m}^{+t,l} -f_{j,i,m}^{-t,l} -\sum _s {r_{j,i}^{l,s} .pf_{j,i,m}^{t,l,s} } } \right] \nonumber \\&\qquad +\mathop \sum \limits _{n,nt\in NT,n} \left( {1-lg_{nt}^t } \right) .G_{n,nt,m,i}^t +\mathop \sum \limits _{et\in \textit{ET}} \left( {1-lg_{et}^t } \right) .G_{et,m,i}^t \nonumber \\&\qquad +\mathop \sum \limits _{d\in \mathcal {D}} \textit{SDSM}_{d,m,i}^t .\left( {\mathop \sum \limits _{v\le t} \textit{DSM}_{d,i}^v } \right) =D_{i,m}^t {\quad } \begin{array}{l} \forall m\in \mathcal {M}, \\ i\in N, \\ t=1,\ldots ,T \\ \end{array}\end{aligned}$$
(76)
$$\begin{aligned}&f_{i,j,m}^{+t,l} -f_{i,j,m}^{-t,l} -\Gamma _{i,j}^l .N_{i,j}^l .\left( {\theta _{m,i}^t -\theta _{m,j}^t } \right) =0\nonumber \\&\qquad \forall \left( {i,j} \right) \in \textit{NE}_T , m\in \mathcal {M}, t=1,\ldots ,T, l\in \textit{LE} \end{aligned}$$
(77)
$$\begin{aligned}&f_{\ell ,i,j,m}^{+t,{l}'} -f_{\ell ,i,j,m}^{-t,{l}'} -\Gamma _{i,j}^{{l}'} .Y_{\ell ,i,j}^{t,{l}'} .\left( {\theta _{m,i}^t -\theta _{m,j}^t } \right) =0\nonumber \\&\qquad \forall \left( {i,j} \right) \in \textit{NN}_T , m\in \mathcal {M}, t=1,\ldots ,T, {l}'\in \textit{LN},\ell \end{aligned}$$
(78)
$$\begin{aligned}&\sum _s {pf_{i,j,m}^{t,l,s} \le N_{i,j}^l .\bar{{f}}_{i,j}^l }\qquad \forall \left( {i,j} \right) \in \textit{NE}_T , m\in \mathcal {M}, t=1,\ldots ,T, l\in \textit{LE} \end{aligned}$$
(79)
$$\begin{aligned}&\sum _s {pf_{\ell ,i,j,m}^{t,{l}',s} \le Y_{\ell ,i,j}^{t,{l}'} .\bar{{f}}_{i,j}^{{l}'} }\qquad \forall \left( {i,j} \right) \in \textit{NN}_T , m\in \mathcal {M}, t=1,\ldots ,T, {l}'\in \textit{LN},\ell \qquad \end{aligned}$$
(80)
$$\begin{aligned}&f_{i,j,m}^{+t,l} +f_{i,j,m}^{-t,l} =\sum _s {pf_{i,j,m}^{t,l,s} }\qquad \forall \left( {i,j} \right) \in \textit{NE}_T , m\in \mathcal {M},l\in \textit{LE} \end{aligned}$$
(81)
$$\begin{aligned}&f_{\ell ,i,j,m}^{+t,{l}'} +f_{\ell ,i,j,m}^{-t,{l}'} =\sum _s {pf_{i,j,m}^{t,{l}',s} }\qquad \forall \left( {i,j} \right) \in \textit{NN}_T , m\in \mathcal {M},{l}'\in \textit{LN},\ell \end{aligned}$$
(82)

where \(r_{j,i}^{{l}',s} \) and \(r_{j,i}^{l,s} \) are equal to:

$$\begin{aligned} r_{i,j}^{{l}',s} =\frac{\mathcal {E}_{i,j}^{{l}'} }{\left( {\Gamma _{i,j}^{{l}'} } \right) ^{2}}. \frac{a_s^2 -a_{s-1}^2 }{a_s -a_{s-1} }.\bar{{f}}_{i,j}^{{l}'} \qquad r_{i,j}^{l,s}= & {} \frac{\mathcal {E}_{i,j}^l }{\left( {\Gamma _{i,j}^l } \right) ^{2}}. \frac{a_s^2 -a_{s-1}^2 }{a_s -a_{s-1} }.\bar{{f}}_{i,j}^l \end{aligned}$$
(83)

It is clear that constraint sets (71) ensure the constraint sets (79) and (80); therefore they are eliminated from the constraints sets. Finally, nonlinearity due to the products of discrete and continuous variables in Eq. (5) is eliminated via substituting this equation with Eqs. (84) and (85).

$$\begin{aligned}&f_{\ell ,j,i,m}^{+t,{l}'} -f_{\ell ,j,i,m}^{-t,{l}'} -\Gamma _{i,j}^{{l}'} . \left( {\theta _{m,i}^t -\theta _{m,j}^t } \right) \le M_{ij} \left( {1-Y_{\ell ,i,j}^{t,{l}'} } \right) \nonumber \\&\qquad \begin{array}{l} \forall \left( {i,j} \right) \in \textit{NN}_T , m\in \mathcal {M}, t=1,\ldots ,T, \\ {l}'\in \textit{LN},\ell \\ \end{array}\end{aligned}$$
(84)
$$\begin{aligned}&-f_{\ell ,j,i,m}^{+t,{l}'} +f_{\ell ,j,i,m}^{-t,{l}'} +\Gamma _{i,j}^{{l}'} .\left( {\theta _{m,i}^t -\theta _{m,j}^t } \right) \le M_{ij} \left( {1-Y_{\ell ,i,j}^{t,{l}'} } \right) \nonumber \\&\qquad \begin{array}{l} \forall \left( {i,j} \right) \in \textit{NN}_T , m\in \mathcal {M}, t=1,\ldots ,T, \\ {l}'\in \textit{LN},\ell \\ \end{array} \end{aligned}$$
(85)

where, \(M_{ij}\) indicates a large enough number.

Appendix 3

In this appendix, we briefly describe the concept of \(\alpha \)-covering and \(\eta \) parameter used in the CCB method proposed by Saharidis et al. (2010). Without loss of generality the following gives linear problem:

where, \(c\in \mathfrak {R}^{n},d\in \mathfrak {R}^{q},b\in \mathfrak {R}^{m}\), A and B are \(m \times n\) and \(m \times q\) matrices.

In Benders decomposition we decompose the IP into PSP, which is a restriction of IP and provides an upper bound (UB) in the case of minimization, and the following relaxation of IP, which is called the restricted master problem (RMP), provides a lower bound (LB). In practice it is not the PSP which is solved in each iteration but the dual of PSP which has the following form:

A low (high) density cut is a cut covering a small (large) number of decision variables of RMP. A decision variable is covered in a cut if its coefficient is not equal to zero (or near to zero relative to the other coefficients).

Definition

In a feasibility cut, a variable \(y_{k}\) is said to be \(\alpha \)-covered in the cut of the form \(\sum _k\left( {v^{T}B} \right) _k y_k \ge v^{T}b\) if the kth row of the matrix \((v^{T}B)\) is greater than or equal to \(\alpha \%\) of the coefficient with the maximum absolute value in the current cut: \({\vert }(v^{T}B)_{k}{\vert } \ge 10^{-2} \alpha \mathrm{Max}_{\forall k}\{{\vert }(v^{T}B)_{k}{\vert }\}\) where \(\alpha \) is a given parameter chosen in [0, 100 %].

The above definition is used in the case of feasibility cut. In the case of optimality cut the vector \(u \in U\) is used instead of the vector \(v \in V\). Also, the parameter \(\eta \) is the average of the coefficients of \(\alpha \)-covered decision variables in the classical Benders cut and takes the following value in each iteration.

$$\begin{aligned} \eta =\left( \frac{1}{k} \right) \sum _j \left| {\left( {v^{T}B} \right) _j } \right| ,\quad j\in \left\{ j:\left| \left( {v^{T}B} \right) _j \right| \ge \alpha \mathop {Max}\limits _{\forall j} \left\{ \left| \left( {v^{T}B} \right) _j \right| \right\} \right\} \end{aligned}$$

Appendix 4

See Figs. 4 and 5.

Fig. 4
figure 4

6 and 21 Bus power systems

Fig. 5
figure 5

48 Bus power system

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenabi, M., Fatemi Ghomi, S.M.T., Torabi, S.A. et al. Acceleration strategies of Benders decomposition for the security constraints power system expansion planning. Ann Oper Res 235, 337–369 (2015). https://doi.org/10.1007/s10479-015-1983-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1983-5

Keywords

Navigation