Skip to main content
Log in

Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints

  • S.I.: Financial Economics
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Multi-portfolio optimization problems and the incorporation of marginal risk contribution constraints have recently received a sustained interest from academia and financial practitioners. We propose a class of new stochastic risk budgeting multi-portfolio optimization models that impose portfolio as well as marginal risk constraints. The models permit the simultaneous and integrated optimization of multiple sub-portfolios in which the marginal risk contribution of each individual security is accounted for. A risk budget defined with a downside risk measure is allocated to each security. We consider the two cases in which the asset universes of the sub-portfolios are either disjoint (diversification of style) or overlap (diversification of judgment). The proposed models take the form of stochastic programming problems and include each a probabilistic constraint with multi-row random technology matrix. We expand a combinatorial modeling framework to represent the feasible set of the chance constraints first as a set of mixed-integer linear inequalities. The new reformulation proposed in this paper is much sparser than previously presented reformulations and allows the efficient solution of problem instances that could not be solved otherwise. We evaluate the efficiency and scalability of the proposed method that is general enough to be applied to general chance-constrained optimization problems. We conduct a cross-validation study via a rolling-horizon procedure to assess the performance of the models, and understand the impact of the parameters and diversification types on the portfolios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Basak, S., & Shapiro, A. (2001). Value-at-risk-based risk management: Optimal policies and asset prices. Review of Financial Studies, 14(2), 371–405.

    Article  Google Scholar 

  • Benati, S., & Rizzi, R. (2007). A mixed integer linear programming formulation of the optimal mean/value-at-risk portfolio problem. European Journal of Operational Research, 176(1), 423–434.

    Article  Google Scholar 

  • Bertsimas, D., Darnell, C., & Soucy, R. (1999). Portfolio construction through mixed-integer programming at Grantham, Mayo, Van Otterloo and Company. Interfaces, 29(1), 49–66.

    Article  Google Scholar 

  • Blake, D., Rossi, A. G., Timmermann, A., Tonks, I., & Wermers, R. (2013). Decentralized investment management: Evidence from the pension fund industry. The Journal of Finance, 68(3), 1133–1178.

    Article  Google Scholar 

  • Bonami, P., & Lejeune, M. A. (2009). An exact solution approach for portfolio optimization problems under stochastic and integer constraints. Operations Research, 57, 650–670.

    Article  Google Scholar 

  • Boros, E., Hammer, P. L., Ibaraki, T., & Kogan, A. (1997). Logical analysis of numerical data. Mathematical Programming, 79, 163–190.

    Google Scholar 

  • Boudt, K., Peterson, B., & Croux, C. (2008). Estimation and decomposition of downside risk for portfolios with non-normal returns. Journal of Risk, 11(2), 79–103.

    Article  Google Scholar 

  • Boudt, K., Carl, P., & Peterson, B. (2013). Asset allocation with conditional value-at-risk budgets. Journal of Risk, 15(3), 39–68.

    Article  Google Scholar 

  • Bruder, B., & Roncalli, T. (2013). Managing risk exposures using the risk parity approach. Tech. rep., LYXOR Research Report.

  • Charnes, A., & Cooper, W. W. (1959). Chance-constrained programming. Management Science, 6(1), 73–79.

    Article  Google Scholar 

  • Chopra, V. K., & Ziemba, W. T. (1993). The effect of errors in means, variances, and covariances on optimal portfolio choice. The Journal of Portfolio Management, 19(2), 6–11.

    Article  Google Scholar 

  • Cornuejóls, G., & Tútúncú, R. (2007). Optimization methods in finance. New York: Cambridge University Press.

    Google Scholar 

  • Crama, Y., & Hammer, P. L. (2011). Boolean functions—Theory, algorithms and applications. New York: Cambridge Press University.

    Book  Google Scholar 

  • DeMiguel, V., Garlappi, L., Nogales, F. J., & Uppal, R. (2009). A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management Science, 55(5), 798–812.

    Article  Google Scholar 

  • Elton, E. J., & Gruber, M. J. (2004). Optimum centralized portfolio construction with decentralized portfolio management. Journal of Financial and Quantitative Analysis, 39(3), 481–494.

    Article  Google Scholar 

  • Fabozzi, F., Huang, D., & Zhou, G. (2010). Robust portfolios: Contributions from operations research and finance. Annals of Operations Research, 176, 191–220.

    Article  Google Scholar 

  • Filomena, T. P., & Lejeune, M. A. (2012). Stochastic portfolio optimization with proportional transaction costs: Convex reformulations and computational experiments. Operations Research Letters, 40(3), 212–217.

    Article  Google Scholar 

  • Filomena, T. P., & Lejeune, M. A. (2014). Warm-start heuristic for stochastic portfolio optimization with fixed and proportional transaction costs. Journal of Optimization Theory and Applications, 161(1), 308–329.

    Article  Google Scholar 

  • Gaivoronski, A. A., & Pflug, G. (2005). Value-at-risk in portfolio optimization: Properties and computational approach. Journal of Risk, 7(2), 1–31.

    Article  Google Scholar 

  • Goh, J. W., Lim, K. G., Sim, M., & Zhang, W. (2012). Portfolio value-at-risk optimization for asymmetrically distributed asset returns. European Journal of Operational Research, 221(2), 397–406.

    Article  Google Scholar 

  • Hsia, Y., Wu, B., & Li, D. (2014). New reformulations for probabilistically constrained quadratic programs. European Journal of Operational Research, 233(3), 550–556.

    Article  Google Scholar 

  • Jaeger, R. A., Rausch, M. A., & Foley, M. (2010). Multi-horizon investing: A new paradigm for endowments and other long-term investors. The Journal of Wealth Management, 13(1), 32–42.

    Article  Google Scholar 

  • Jorion, P. (2001). Value at risk: The new benchmark for managing financial risk (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Kataoka, S. (1963). A stochastic programming model. Econometrica, 31(12), 181–196.

    Article  Google Scholar 

  • Kogan, A., & Lejeune, M. A. (2014). Threshold Boolean form for joint probabilistic constraints with random technology matrix. Mathematical Programming, 147(1–2), 391–427.

    Article  Google Scholar 

  • Krokhmal, P., Palmquist, J., & Uryasev, S. (2001). Portfolio optimization with conditional value-at-risk objective and constraints. Journal of Risk, 4, 43–68.

    Article  Google Scholar 

  • Lai, T. L., Xing, H., & Chen, Z. (2011). Mean-variance portfolio optimization when means and covariances are unknown. The Annals of Applied Statistics, 5(2A), 798–823.

    Article  Google Scholar 

  • Lee, J., & Prépoka, A. (2012). Properties and calculation of multivariate risk measures: MVaR and MCVaR. Rutcor Research Report.

  • Lejeune, M. A. (2012a). Pattern-based modeling and solution of probabilistically constrained optimization problems. Operations Research, 60(6), 1356–1372.

    Article  Google Scholar 

  • Lejeune, M. A. (2012b). Pattern definition of the \(p\)-efficiency concept. Annals of Operations Research, 200(1), 23–36.

    Article  Google Scholar 

  • Lejeune, M. A., & Shen, S. (2014). Boolean formulations for multi-objective probabilistically constrained programs with variable risk. Working Paper.

  • Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77–91. March.

    Google Scholar 

  • Markowitz, H. M. (1959). Portfolio selection: Efficient diversification of investments. New York: Wiley.

    Google Scholar 

  • Morgan, J. P. (1996). RiskMetrics: Technical document. New York: Morgan Guaranty Trust Company of New York.

    Google Scholar 

  • Morgan, J. P. (1997). CreditMetrics: Technical Document. New Yok: JP Morgan & Co.

    Google Scholar 

  • O’Cinneide, C., Scherer, B., & Xu, X. (2006). Pooling trades in a quantitative investment process. The Jounral of Portfolio Management, 32(4), 33–43.

    Article  Google Scholar 

  • Ogryczak, W., & Ruszczyński, A. (1999). From stochastic dominance to mean-risk models: Semi-deviations as risk measures. European Journal of Operational Research, 116, 33–50.

    Article  Google Scholar 

  • Pagnoncelli, B. K., Ahmed, S., & Shapiro, A. (2009). Sample average approximation method for chance constrained programming: Theory and applications. Journal of Optimization Theory and Applications, 142(2), 399–416.

    Article  Google Scholar 

  • Prékopa, A. (2012). Multivariate value at risk and related topics. Annals of Operations Research, 193, 49–69.

    Article  Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21–42.

    Article  Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), 1443–1471.

    Article  Google Scholar 

  • Roncalli, T. (2013). Introduction to risk parity and budgeting. Boca Raton: CRC Financial Mathematics Series.

    Google Scholar 

  • Roy, A. D. (1952). Safety first and the holding of assets. Econometrica: Journal of the Econometric Society, 20(3), 431–449.

    Article  Google Scholar 

  • Savelsbergh, M. W. P., Stubbs, R. A., & Vandenbussche, D. (2010). Multiportfolio optimization: A natural next step. In J. B. Guerard (Ed.), Handbook of portfolio construction (pp. 565–581). Berlin: Springer.

    Chapter  Google Scholar 

  • Sharpe, W. F. (1981). Decentralized investment management. Journal of Finance, 36, 217–234.

    Article  Google Scholar 

  • Standard & Poor’s (S&P) and Morgan Stanley Capital International (MSCI). (2002). Global industry classification standard—A guide to the GICS methodology.

  • Stubbs, R. A., & Vandenbussche, D. (2009). Multi-portfolio optimization and fairness in allocation of trades.Tech. rep., Axioma Research Paper.

  • Unger, A. (2015). The use of risk budgets in portfolio optimization. Berlin: Springer.

    Book  Google Scholar 

  • Vardharaj, R., & Fabozzi, F. J. (2007). Sector, style, region: Explaining stock allocation performance. Financial Analysts Journal, 63(3), 59–70.

    Article  Google Scholar 

  • Wang, M. Y. (1999). Multiple-benchmark and multiple-portfolio optimization. Financial Analyst Journal, 55(1), 63–72.

    Article  Google Scholar 

  • Wozabal, D. (2012). Value-at-risk optimization using the difference of convex algorithm. OR Spectrum, 34(4), 861–883.

    Article  Google Scholar 

  • Yoda, K., & Prékopa, A. (2010). Optimal portfolio selection based on multiple value at risk constraints. Rutcor Research Report.

  • Zheng, X., Sun, X., Li, D., & Cui, X. (2012). Lagrangian decomposition and mixed-integer quadratic programming reformulations for probabilistically constrained quadratic programs. European Journal of Operational Research, 221(1), 38–48.

    Article  Google Scholar 

  • Zhu, S., Li, D., & Sun, X. (2010). Portfolio selection with marginal risk control. Journal of Computational Finance, 14(1), 3–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Ji.

Appendices

Appendix

1.1 Appendix 1: Example for combinatorial reformulation method

Example 1

Consider the following stochastic multi-portfolio optimization problem based on formulation M1. Assets 1 and 2 (resp., 1 and 3) are considered for possible inclusion in sub-portfolio 1 (resp., 2). The random vector \(\xi \) of asset returns accepts 10 equally likely realizations \(l_j^k, k \in {\varOmega }= \{1,\ldots ,10\}\). The loss realizations (expressed in percentage of asset prices) and probability distribution are shown in Table 5. The notation F refers to the cumulative trivariate probability distribution of the asset returns, while \(F_j, j\in J\) is the cumulative marginal probability distribution of asset j.

$$\begin{aligned} \max \quad \quad&0.001(x_{11}+x_{21}) + 0.002(x_{12}+x_{22}) + 0.003(x_{13}+x_{23}) \end{aligned}$$
(57)
$$\begin{aligned} \textit{s.t.}\quad&\mathbb {P} \begin{Bmatrix} \xi _1x_{11} \le d_{11} \\ \xi _1x_{21} \le d_{21} \\ \xi _2x_{12} \le d_{12} \\ \xi _3x_{23} \le d_{23} \end{Bmatrix} \ge 0.7 \end{aligned}$$
(58)
$$\begin{aligned}&d_{11} + d_{21} \le 0.011 \end{aligned}$$
(59)
$$\begin{aligned}&d_{12} \le 0.015 \end{aligned}$$
(60)
$$\begin{aligned}&d_{23} \le 0.012 \end{aligned}$$
(61)
$$\begin{aligned}&d_{11} + d_{12} \le 0.03 \end{aligned}$$
(62)
$$\begin{aligned}&d_{21} + d_{23} \le 0.02 \end{aligned}$$
(63)
$$\begin{aligned}&x_{11} + x_{12} = 0.40 \end{aligned}$$
(64)
$$\begin{aligned}&x_{21} + x_{23} = 0.60 \end{aligned}$$
(65)
$$\begin{aligned}&x_{11} + x_{21} \le 0.50 \end{aligned}$$
(66)
$$\begin{aligned}&x_{12} + x_{22} \le 0.40 \end{aligned}$$
(67)
$$\begin{aligned}&x_{13} + x_{23} \le 0.30 \end{aligned}$$
(68)
$$\begin{aligned}&x_{11}, x_{12}, x_{21}, x_{23} \ge 0 \end{aligned}$$
(69)
Table 5 Probability distribution

1.2 Sufficient-equivalent set of cut points and binarization

In our example, the sufficient-equivalent set \(C^e(p)\) includes seven cut points.

$$\begin{aligned} C^e {=} \{ c_{11} = 0.03; c_{21} = 0.01, c_{22} = 0.02, c_{23} = 0.04; c_{31} = 0.01, c_{32} = 0.02, c_{33} = 0.03 \}. \end{aligned}$$

The binary images of the recombinations obtained with \(C^e(p)\) are shown in Table 6. The truth table of the pdBf \(g\left( \bar{{\varOmega }}_B^+(p), \bar{{\varOmega }}_B^-(p) \right) \) is displayed in the central part of Table 6.

Table 6 Set of recombinations and partially defined Boolean function

1.3 Reformulations of threshold tight minorant (27)–(29)

In our example, the system of inequalities (27)–(29) reads:

$$\begin{aligned} \lambda _{11} + \lambda _{21} + \lambda _{31}&\le 2&(27) \quad \text {for k = 11} \\ \lambda _{11} + \lambda _{21} + \lambda _{31} + \lambda _{32}&\le 2&(27) \quad \text {for k = 12} \\ \lambda _{11}&= 1&(28) \quad \text {for}\, j = 1 \\ \lambda _{21} + \lambda _{22} + \lambda _{23}&= 1&(28) \quad \text {for}\, j = 2 \\ \lambda _{31} + \lambda _{32} + \lambda _{33}&= 1&(28) \quad \text {for}\, j = 3 \\ \lambda _{jm} \in \{0,1\} \; ,\;&\forall j,m&(29) \quad \forall j,m \end{aligned}$$

1.4 Reformulations of threshold tight minorant (31)–(34)

In our example, the system of inequalities (31)–(34) reads:

$$\begin{aligned}&\gamma _{22} + \gamma _{32} \ge 1&(31) \quad \text {for}\, k = 11 \\&\gamma _{22} + \gamma _{33} \ge 1&(31) \quad \text {for}\, k = 12 \\&\gamma _{21} \ge \gamma _{22} \ge \gamma _{23}&(32) \quad \text {for}\, j = 2, m = 2, 3 \\&\gamma _{31} \ge \gamma _{32} \ge \gamma _{33}&(32) \quad \text {for}\, j = 3, m = 2, 3 \\&\gamma _{11} = \gamma _{21} = \gamma _{31} = 1&(33) \quad \text {for}\, j = 1, 2, 3 \\&\gamma _{jm} \in \{0,1\} \; , \quad \forall j,m&(34) \quad \forall j,m \end{aligned}$$

1.5 Feasible set with DMR-0 reformulation

The reformulations for the feasible set of the chance constraint defined by (50)–(54) reads:

$$\begin{aligned}&0.03y_{111} \le d_{11};&(50) \\&0.03y_{211} \le d_{21};&(50) \\&0.01y_{121} + 0.02y_{122} + 0.04y_{123} \le d_{12};&(50) \\&0.01y_{231} + 0.02y_{232} + 0.03y_{233} \le d_{23};&(50) \\&y_{111} \le 0.5\lambda _{11}; \qquad y_{211} \le 0.5\lambda _{11}&(51) \\&y_{121} \le 0.4\lambda _{21}; \qquad y_{122} \le 0.4\lambda _{22}; \qquad y_{123} \le 0.4\lambda _{23};&(51) \\&y_{221} \le 0.4\lambda _{21}; \qquad y_{222} \le 0.4\lambda _{22}; \qquad y_{223} \le 0.4\lambda _{23};&(51) \\&y_{131} \le 0.3\lambda _{31}; \qquad y_{132} \le 0.3\lambda _{32}; \qquad y_{133} \le 0.3\lambda _{33};&(51) \\&y_{231} \le 0.3\lambda _{31}; \qquad y_{232} \le 0.3\lambda _{32}; \qquad y_{233} \le 0.3\lambda _{33};&(51) \\&y_{111}, y_{121}, y_{122}, y_{123}, y_{131}, y_{132}, y_{133} \ge 0 ;&(52) \\&y_{211}, y_{221}, y_{222}, y_{223}, y_{231}, y_{232}, y_{233} \ge 0;&(52) \\&y_{111} \le x_{11};&(53) \\&y_{121} \le x_{12}; \qquad y_{122} \le x_{12}; \qquad y_{123} \le x_{12};&(53) \\&y_{131} \le x_{13}; \qquad y_{132} \le x_{13}; \qquad y_{133} \le x_{13};&(53) \\&y_{211} \le x_{21};&(53) \\&y_{221} \le x_{22}; \qquad y_{222} \le x_{22}; \qquad y_{223} \le x_{22};&(53) \\&y_{231} \le x_{23}; \qquad y_{232} \le x_{23}; \qquad y_{233} \le x_{23};&(53) \\&y_{111} \ge y_{11} + 0.5(\lambda _{11}-1); \qquad y_{211} \ge x_{21} + 0.5(\lambda _{11}-1);&(54) \\&y_{121} \ge x_{12} + 0.5(\lambda _{21}-1); \qquad y_{122} \ge x_{12} + 0.5(\lambda _{22}-1);&(54) \\&y_{123} \ge x_{12} + 0.4(\lambda _{23}-1); \qquad y_{131} \ge x_{13} + 0.4(\lambda _{31}-1);&(54) \\&y_{132} \ge x_{13} + 0.4(\lambda _{32}-1); \qquad y_{133} \ge x_{13} + 0.4(\lambda _{33}-1);&(54) \\&y_{221} \ge x_{22} + 0.5(\lambda _{21}-1); \qquad y_{222} \ge x_{22} + 0.5(\lambda _{22}-1);&(54) \\&y_{223} \ge x_{22} + 0.4(\lambda _{23}-1); \qquad y_{231} \ge x_{23} + 0.4(\lambda _{31}-1);&(54) \\&y_{232} \ge x_{23} + 0.4(\lambda _{32}-1); \qquad y_{233} \ge x_{23} + 0.4(\lambda _{33}-1);&(54) \end{aligned}$$

1.6 Feasible set with DRM1 reformulation

The reformulations for the feasible set of the chance constraint defined by (42)–(46) reads:

$$\begin{aligned}&0.03z_{111} \le d_{11};&(42) \\&0.03z_{211} \le d_{21};&(42) \\&0.01z_{121} + 0.01z_{122} + 0.02z_{123} \le d_{12};&(42) \\&0.01z_{231} + 0.01z_{232} + 0.01z_{233} \le d_{23};&(42) \\&z_{111} \le 0.5\gamma _{11}; \qquad z_{211} \le 0.5\gamma _{11}&(43) \\&z_{121} \le 0.4\gamma _{21}; \qquad z_{122} \le 0.4\gamma _{22}; \qquad z_{123} \le 0.4\gamma _{23};&(43) \\&z_{221} \le 0.4\gamma _{21}; \qquad z_{222} \le 0.4\gamma _{22}; \qquad z_{223} \le 0.4\gamma _{23};&(43) \\&z_{131} \le 0.3\gamma _{31}; \qquad z_{132} \le 0.3\gamma _{32}; \qquad z_{133} \le 0.3\gamma _{33};&(43) \\&z_{231} \le 0.3\gamma _{31}; \qquad z_{232} \le 0.3\gamma _{32}; \qquad z_{233} \le 0.3\gamma _{33};&(43) \\&z_{111}, z_{121}, z_{122}, z_{123}, z_{131}, z_{132}, z_{133} \ge 0;&(44) \\&z_{211}, z_{221}, z_{222}, z_{223}, z_{231}, z_{232}, z_{233} \ge 0;&(44)\\&z_{111} \le x_{11};&(45) \\&z_{121} \le x_{12}; \qquad z_{122} \le x_{12}; \qquad z_{123} \le x_{12};&(45) \\&z_{131} \le x_{13}; \qquad z_{132} \le x_{13}; \qquad z_{133} \le x_{13};&(45) \\&z_{211} \le x_{21};&(45) \\&z_{221} \le x_{22}; \qquad z_{222} \le x_{22}; \qquad z_{223} \le x_{22};&(45) \\&z_{231} \le x_{23}; \qquad z_{232} \le x_{23}; \qquad z_{233} \le x_{23};&(45) \\&z_{111} \ge x_{11} + 0.5(\gamma _{11}-1); \qquad z_{211} \ge x_{21} + 0.5(\gamma _{11}-1);&(46) \\&z_{121} \ge x_{12} + 0.5(\gamma _{21}-1); \qquad z_{122} \ge x_{12} + 0.5(\gamma _{22}-1);&(46) \\&z_{123} \ge x_{12} + 0.4(\gamma _{23}-1); \qquad z_{131} \ge x_{13} + 0.4(\gamma _{31}-1);&(46) \\&z_{132} \ge x_{13} + 0.4(\gamma _{32}-1); \qquad z_{133} \ge x_{13} + 0.4(\gamma _{33}-1);&(46) \\&z_{221} \ge x_{22} + 0.5(\gamma _{21}-1); \qquad z_{222} \ge x_{22} + 0.5(\gamma _{22}-1);&(46) \\&z_{223} \ge x_{22} + 0.4(\gamma _{23}-1); \qquad z_{231} \ge x_{23} + 0.4(\gamma _{31}-1);&(46) \\&z_{232} \ge x_{23} + 0.4(\gamma _{32}-1); \qquad z_{233} \ge x_{23} + 0.4(\gamma _{33}-1);&(46) \end{aligned}$$

Appendix 2: Asset universe

See Table 7.

Table 7 Assets universe

Appendix 3: Parameters for computational study

See Table 8.

Table 8 Parameter settings

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, R., Lejeune, M.A. Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints. Ann Oper Res 262, 547–578 (2018). https://doi.org/10.1007/s10479-015-2044-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-2044-9

Keywords

Navigation