Skip to main content
Log in

Detecting large risk-averse 2-clubs in graphs with random edge failures

  • Pardalos60
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Detecting large 2-clubs in biological, social and financial networks can help reveal important information about the structure of the underlying systems. In large-scale networks that are error-prone, the uncertainty associated with the existence of an edge between two vertices can be modeled by assigning a failure probability to that edge. Here, we study the problem of detecting large “risk-averse” 2-clubs in graphs subject to probabilistic edge failures. To achieve risk aversion, we first model the loss in 2-club property due to probabilistic edge failures as a function of the decision (chosen 2-club cluster) and randomness (graph structure). Then, we utilize the conditional value-at-risk (CVaR) of the loss for a given decision as a quantitative measure of risk for that decision, which is bounded in the model. More precisely, the problem is modeled as a CVaR-constrained single-stage stochastic program. The main contribution of this article is a new Benders decomposition algorithm that outperforms an existing decomposition approach on a test-bed of randomly generated instances, and real-life biological and social networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed, S. (2006). Convexity and decomposition of mean-risk stochastic programs. Mathematical Programming, 106(3), 433–446.

    Article  Google Scholar 

  • Andersson, F., Mausser, H., Rosen, D., & Uryasev, S. (2001). Credit risk optimization with conditional value-at-risk criterion. Mathematical Programming, 89(2), 273–291.

    Article  Google Scholar 

  • Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–228.

    Article  Google Scholar 

  • Balasundaram, B., & Pajouh, F. M. (2013). Graph theoretic clique relaxations and applications. In P. M. Pardalos, D. Z. Du, & R. Graham (Eds.), Handbook of combinatorial optimization (2nd ed., pp. 1559–1598). New York: Springer.

    Chapter  Google Scholar 

  • Balasundaram, B., Butenko, S., & Trukhanov, S. (2005). Novel approaches for analyzing biological networks. Journal of Combinatorial Optimization, 10(1), 23–39.

    Article  Google Scholar 

  • Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4, 238–252.

    Article  Google Scholar 

  • Boginski, V., Butenko, S., & Pardalos, P. (2006). Mining market data: A network approach. Computers & Operations Research, 33(11), 3171–3184.

    Article  Google Scholar 

  • Bourjolly, J. M., Laporte, G., & Pesant, G. (2002). An exact algorithm for the maximum \(k\)-club problem in an undirected graph. European Journal Of Operational Research, 138, 21–28.

    Article  Google Scholar 

  • Center for Complex Networks Research (2007). Network databases. http://www3.nd.edu/~networks/resources.htm. Accessed Dec 2014.

  • Chung, F., & Lu, L. (2006). Complex graphs and networks. CBMS lecture series. Providence: American Mathematical Society.

    Book  Google Scholar 

  • Cook, D. J., & Holder, L. B. (2000). Graph-based data mining. IEEE Intelligent Systems, 15(2), 32–41.

    Article  Google Scholar 

  • Fábián, C. I. (2008). Handling CVaR objectives and constraints in two-stage stochastic models. European Journal of Operational Research, 191(3), 888–911.

    Article  Google Scholar 

  • Faghih-Roohi, S., Ong, Y. S., Asian, S., & Zhang, A. N. (2015). Dynamic conditional value-at-risk model for routing and scheduling of hazardous material transportation networks. Annals of Operations Research,. doi:10.1007/s10479-015-1909-2.

    Google Scholar 

  • Grossman, J., Ion, P., & Castro, R.D. (1995). The Erdös number project. Online: http://www.oakland.edu/enp/. Accessed Dec 2014.

  • Haneveld, W., & van der Vlerk, M. (2006). Integrated chance constraints: Reduced forms and an algorithm. Computational Management Science, 3(4), 245–269.

    Article  Google Scholar 

  • Huang, P., & Subramanian, D. (2012). Iterative estimation maximization for stochastic linear programs with conditional value-at-risk constraints. Computational Management Science, 9(4), 441–458.

    Article  Google Scholar 

  • Jeong, H., Mason, S. P., Barabási, A. L., & Oltvai, Z. N. (2001). Centrality and lethality of protein networks. Nature, 411, 41–42.

    Article  Google Scholar 

  • Kammerdiner, A., Sprintson, A., Pasiliao, E., & Boginski, V. L. (2012). Optimization of discrete broadcast under uncertainty using conditional value-at-risk. Optimization Letters, 8(1), 45–59. doi:10.1007/s11590-012-0542-0.

    Article  Google Scholar 

  • KEGG BRITE Database (2014). Biomolecular relations in information transmission and expression. http://www.genome.jp/kegg/brite.html. Accessed Dec 2014.

  • Krokhmal, P., Palmquist, J., & Uryasev, S. (2002). Portfolio optimization with conditional value-at-risk objective and constraints. Journal of Risk, 4, 43–68.

    Article  Google Scholar 

  • Künzi-Bay, A., & Mayer, J. (2006). Computational aspects of minimizing conditional value-at-risk. Computational Management Science, 3(1), 3–27.

    Article  Google Scholar 

  • Lim, C., Sherali, H. D., & Uryasev, S. (2010). Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization. Computational Optimization and Applications, 46(3), 391–415.

    Article  Google Scholar 

  • Luce, R. D. (1950). Connectivity and generalized cliques in sociometric group structure. Psychometrika, 15(2), 169–190.

    Article  Google Scholar 

  • Ma, J., Pajouh, F. M., Balasundaram, B., & Boginski, V. (2016). The minimum spanning \(k\)-core problem with bounded CVaR under probabilistic edge failures. INFORMS Journal on Computing, 28(2), 295–307.

    Article  Google Scholar 

  • Mansini, R., Ogryczak, W., & Speranza, M. G. (2006). Conditional value at risk and related linear programming models for portfolio optimization. Annals of Operations Research, 152(1), 227–256. doi:10.1007/s10479-006-0142-4.

    Article  Google Scholar 

  • Moazeni, S., Powell, W. B., & Hajimiragha, A. H. (2015). Mean-conditional value-at-risk optimal energy storage operation in the presence of transaction costs. IEEE Transactions on Power Systems, 30(3), 1222–1232. doi:10.1109/TPWRS.2014.2341642.

    Article  Google Scholar 

  • Mokken, R. J. (1979). Cliques, clubs and clans. Quality and Quantity, 13(2), 161–173.

    Article  Google Scholar 

  • Pajouh, F. M., & Balasundaram, B. (2012). On inclusionwise maximal and maximum cardinality \(k\)-clubs in graphs. Discrete Optimization, 9(2), 84–97.

    Article  Google Scholar 

  • Pattillo, J., Youssef, N., & Butenko, S. (2013). On clique relaxation models in network analysis. European Journal of Operational Research, 226(1), 9–18.

    Article  Google Scholar 

  • Pavlikov, K., & Uryasev, S. (2014). CVaR norm and applications in optimization. Optimization Letters, 8(7), 1999–2020. doi:10.1007/s11590-013-0713-7.

    Article  Google Scholar 

  • Quaranta, A. G., & Zaffaroni, A. (2008). Robust optimization of conditional value at risk and portfolio selection. Journal of Banking & Finance, 32(10), 2046–2056.

    Article  Google Scholar 

  • Rain, J.C., Selig, L., Reuse, H.D., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., Petel, F., Wojcik, J., Schachter, V., Chemama, Y., Labigne, A., & Legrain, P. (2004). The protein-protein interaction map of helicobacter pylori. Nature 409(6817):211–215, erratum in: Nature 409(6820):553 and 409(6821):743, 2001.

  • Rockafellar, R., & Uryasev, S. (2000). Optimization of conditional value-at-risk. The Journal of Risk, 2(3), 21–41.

    Article  Google Scholar 

  • Rockafellar, R., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), 1443–1471.

    Article  Google Scholar 

  • Schultz, R., & Tiedemann, S. (2006). Conditional value-at-risk in stochastic programs with mixed-integer recourse. Mathematical Programming, 105(2–3), 365–386.

    Article  Google Scholar 

  • Soleimani, H., & Govindan, K. (2014). Reverse logistics network design and planning utilizing conditional value at risk. European Journal of Operational Research, 237(2), 487–497. doi:10.1016/j.ejor.2014.02.030, http://www.sciencedirect.com/science/article/pii/S0377221714001635.

  • Spirin, V., & Mirny, L. A. (2003). Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences, 100(21), 12,123–12,128.

    Article  Google Scholar 

  • Subramanian, D., & Huang, P. (2009). An efficient decomposition algorithm for static, stochastic, linear and mixed-integer linear programs with conditional value-at-risk constraints. Tech. Rep. RC24752, IBM Research Report.

  • Uryasev, S. (2000). Conditional value-at-risk: optimization algorithms and applications. In: Computational Intelligence for Financial Engineering, 2000. (CIFEr) Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on, IEEE, pp. 49–57.

  • Van Slyke, R., & Wets, R. (1969). L-shaped linear programs with applications to control and stochastic programming. SIAM Journal on Applied Mathematics, 17, 638–663.

    Article  Google Scholar 

  • Yezerska, O., Butenko, S., & Boginski, V. L. (2016). Detecting robust cliques in graphs subject to uncertain edge failures. Annals of Operations Research,. doi:10.1007/s10479-016-2161-0.

    Google Scholar 

  • Zheng, Q. P., Wang, J., & Liu, A. L. (2015). Stochastic optimization for unit commitment-a review. IEEE Transactions on Power Systems, 30(4), 1913–1924.

    Article  Google Scholar 

Download references

Acknowledgments

Author Balasundaram would like to acknowledge the support of the Air Force Office of Scientific Research Grant FA9550-12-1-0103 and the National Science Foundation Grant CMMI-1404971. The computational experiments reported in this article were conducted at the Oklahoma State University High Performance Computing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foad Mahdavi Pajouh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi Pajouh, F., Moradi, E. & Balasundaram, B. Detecting large risk-averse 2-clubs in graphs with random edge failures. Ann Oper Res 249, 55–73 (2017). https://doi.org/10.1007/s10479-016-2279-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2279-0

Keywords

Navigation