Skip to main content

Advertisement

Log in

Product costing in the strategic formation of a supply chain

  • Advances in Theoretical and Applied Combinatorial Optimization
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This study presents manufacturing and distribution network models for strategic supply chain planning. Where prices of intermediate products in the supply chain are not readily available, we study the influence on the formation of the supply chain of using either direct product costing or full absorption costing for setting internal prices. We develop a generalized Benders decomposition-based approach to solve the models. Problems representing a variety of scenarios that simulates different economic environments are solved. Our computational results show that the product costing method could influence the concentration of production activities at potential manufacturing locations, production and shipment quantities, product prices, and allocation of profits in the supply chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Refer to Hilton (2002) and Hirsch (2006) for other traditional accounting responsibilities.

  2. Note that there are other costing methods, such as process costing, job costing, hybrid costing, etc. which are not considered in this study. For detailed descriptions of these methods, we refer the readers to http://www.accountingtools.com/.

  3. Refer to http://www.inboundlogistics.com/cms/article/understanding-incoterms/ for details about who bears the transportation costs and risks.

  4. We note that our model can be adapted easily to problems with more expansive bill of materials.

  5. In contrast, for shorter-run level decisions, operational hedging may be necessary to minimize losses from exchange rate fluctuations (Kouvelis 1999).

  6. Could also include the costs of overhead, capital efficiency, capital allocations, and other costs up to point of purchase.

  7. When destination plants require additional processing in country j, \(a_{ij} \) can vary with the destination country and requires a third index k.

  8. See http://www.ey.com/Publication/vwLUAssets/Managing-indirect-taxes-in-the-supply-chain/$FILE/Managing-indirect-taxes.pdf for details.

  9. Markups on cost are gross profits. These markups occur at the point of shipment (sale) from the producing country to the receiving local affiliate. Note that on a domestic, “within” country plant to plant/DC/local affiliate shipment, there is typically no markup.

  10. The model recognizes and evaluates the local taxes paid on the profits recorded by the plant selling to another plant, and on the profits generated by the DC selling to the external customer.

  11. Note we do not consider tax credit for losses in our model which is realistic and valid in some countries (see also Goetschalckx et al. 2002).

  12. Note that some of these arms length constraints can be relaxed, if appropriate, depending upon the tax laws of the shipping and receiving countries, and/or the policy of the multinational firm.

  13. Often a multinational firm has internal guidelines or policies regarding the range of markup percentages it will allow on transactions between its plants and local markets around the world. In many cases, local country regulations heavily influence or dictate these corporate guidelines.

  14. Since problem FAC does not have the binary integer variables V.

  15. The 10 and 40% markup limits are based on our familiarity with some firms that use them.

  16. By inference, the price function is structurally similar to the exponential distribution density function \(f(x)=\frac{1}{\alpha }e^{-x/\alpha }, x>0\) whose variance is \(\alpha ^{2}\).

References

  • Aghezzaf, E. (2005). Capacity planning and warehouse location in supply chains with uncertain demands. Journal of the Operational Research Society, 56, 453–462.

    Article  Google Scholar 

  • Alles, M., & Datar, S. (1998). Strategic transfer pricing. Management Science, 44, 451–461.

    Article  Google Scholar 

  • Baldenius, T., Melumad, N., & Reichelstein, S. (2004). Integrating managerial and tax objectives in transfer pricing. Accounting Review, 79, 591–615.

    Article  Google Scholar 

  • Borkowski, S. C. (1992). Choosing a transfer pricing method a study of the domestic and international decision-making process. Journal of International Accounting Auditing and Taxation, 1(1), 33–49.

    Article  Google Scholar 

  • Borkowski, S. C. (1996). An analysis (meta- and otherwise) of multinational transfer pricing research. The International Journal of Accounting, 31(1), 39–53.

    Article  Google Scholar 

  • Chan, K. H., & Lo, A. (2004). The influence of management perception of environmental variables on the choice of international transfer-pricing methods. The International Journal of Accounting, 39(1), 93–110.

    Article  Google Scholar 

  • Christensen, J., & Demski, J. (1998). Profit allocation under ancillary trade. Journal of Accounting Research, 36(1), 71–89.

    Article  Google Scholar 

  • Colbert, G. J., & Spicer, B. H. (1995). A multi-case investigation of a theory of the transfer pricing process. Accounting, Organization and Society, 20(6), 423–456.

    Article  Google Scholar 

  • Cplex 12.6 users manual. http://www.scribd.com/doc/239587276/Ibm-Ilog-Cplex-User-Manual-12-6#scribd

  • de Matta, R., & Miller, T. (2015). Formation of a strategic manufacturing and distribution network with transfer prices. European Journal of Operational Research, 241(2), 705–723.

    Article  Google Scholar 

  • Dikolli, S., & Vaysman, I. (2006). Information technology, organizational design, and transfer pricing. Journal of Accounting and Economics, 41, 203–236.

    Article  Google Scholar 

  • Eden, L. (1985). The microeconomics of transfer pricing. In A. M. Rugman & L. Eden (Eds.), Multinationals and transfer pricing (pp. 13–46). New York: St. Martins Press.

    Google Scholar 

  • Geoffrion, A. (1972). Generalized benders decomposition. Journal of Optimization Theory and Applications, 10(4), 237–260.

    Article  Google Scholar 

  • Goetschalckx, M., Vidal, C., & Dogan, K. (2002). Modeling and design of global logistics systems a review of integrated strategic and tactical models and design algorithms. European Journal of Operational Research, 143, 1–18.

    Article  Google Scholar 

  • Göx, R. F. (2000). Strategic transfer pricing, absorption costing, and observability. Management Accounting Research, 11, 327–348.

    Article  Google Scholar 

  • Göx, R. F., & Schiller, U. (2007). An economic perspective on transfer pricing. In C. S. Chapman, A. G. Hopwood, & M. D. Shields (Eds.), Handbook of management accounting research (Vol. 2, pp. 673–693). Amsterdam: Elsevier.

    Google Scholar 

  • Guillen, G., Mele, F., Bagajewicz, M., Espuna, A., & Puigjaner, L. (2005). Multiobjective supply chain design under uncertainty. Chemical Engineering Science, 60, 1535–1553.

  • Hammami, R., & Frein, Y. (2013). A scenario-based stochastic model for supplier selection in global context with multiple buyers, currency fluctuation uncertainties, and price discounts. European Journal of Operational Research, 233(1), 159–168.

    Article  Google Scholar 

  • Hammami, R., Frein, Y., & Hadj-Alouane, A. (2009). A strategic-tactical model for the supply chain design in the delocalization context: Mathematical formulation and a case study. International Journal of Production Economics, 122, 351–365.

    Article  Google Scholar 

  • Hilton, R. (2002). Managerial accounting creating value in a dynamic business environment. New York: McGraw-Hill Companies, Inc.

    Google Scholar 

  • Hirsch, M. (2006). Advanced management accounting (2nd ed.). Boston, MA: South-Western, Cengage Learning.

    Google Scholar 

  • Holmstrom, B., & Tirole, J. (1991). Transfer pricing and organizational form. Journal of Law, Economics and Organization, 7, 201–228.

    Article  Google Scholar 

  • Huchzermeier, A., & Cohen, M. (1996). Valuing operational flexibility under exchange rate risk. Operations Research, 44(1), 100–114.

    Article  Google Scholar 

  • Kouvelis, P. (1999). Global sourcing strategies under exchange rate uncertainty. In S. Tayur et al. (Eds.) Quantitative models for supply chain management (pp. 625–667). Boston, MA: Kluwer Academic Publishers.

  • Kouvelis, P., & Rosenblatt, M. (2002). A mathematical programming model for global supply chain in management: Conceptual approach and managerial insights. In J. Geunes, P. Pardalos, & E. Romeijn (Eds.), Applied optimization. Supply chain management: Models, applications, and research directions (Vol. 62, pp. 245–278). London: Kluwer.

    Chapter  Google Scholar 

  • Lakhal, S. (2006). An operational profit sharing and transfer pricing model for network-manufacturing companies. European Journal of Operational Research, 175, 543–565.

    Article  Google Scholar 

  • Li, Q., & Atkins, D. (2002). Coordinating replenishment and pricing in a firm. Manufacturing, Service Operations Management, 4(4), 241–258.

    Article  Google Scholar 

  • Listes, O., & Dekker, N. (2005), A stochastic approach to a case study for product recovery network design. European Journal of Operational Research, 160, 268–287.

  • Lowe, T., Wendell, R., & Hu, G. (2002), Screening location strategies to reduce exchange rate risk. European Journal of Operational Research, 136, 573–590.

  • Markham, M. (2005). The Transfer Pricing Of Intangibles. BV: Kluwer Law International.

    Google Scholar 

  • Melo, M., Nickel, S., & Saldanha da Gama, F. (2005). Dynamic multi-commodity capacitated facility location a mathematical modeling framework for strategic supply chain planning. Computers and Operations Research, 33, 181–208.

    Article  Google Scholar 

  • Miller, T. (2002). Hierarchical operations and supply chain management. London: Springer.

    Book  Google Scholar 

  • Miller, T., & de Matta, R. (2003). Integrating production and transportation scheduling decisions between two geographically separated plants. Journal of Business Logistics, 24(1), 111–146.

    Article  Google Scholar 

  • Miller, T., & de Matta, R. (2008). A global supply chain profit maximization and transfer pricing model. Journal of Business Logistics, 24(1), 175–199.

    Article  Google Scholar 

  • Nickel, S., Saldanha-da-Gama, F., & Ziegler, H. P. (2012). A multi-stage stochastic supply network design problem with financial decisions and risk management. Omega, 40, 511–524.

    Article  Google Scholar 

  • Perron, S., Hansen, P., Le Digabel, S., & Mladenovic, N. (2010). Exact and heuristic solutions of the global supply chain problem with transfer pricing. European Journal of Operational Research, 202(3), 864–879.

    Article  Google Scholar 

  • Raimondos-Moller, P., & Scharf, K. (2002). Transfer pricing rules and competing governments. Oxford Economic Papers, 54(2), 230–246.

    Article  Google Scholar 

  • Sabri, E., & Beamon, B. (2000). A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega, 28, 581–598.

  • Sahay, S. A. (2003). Transfer pricing based on actual cost. Journal of Management Accounting Research, 15, 177–192.

    Article  Google Scholar 

  • Santoso, T., Ahmed, S., Goetschalckx, M., & Shapiro, A. (2005). A stochastic programming approach for supply chain network design under uncertainty. European Journal of Operational Research, 167, 96–115.

  • Shunko, M., & Gavirneni, S. (2007). Role of transfer prices in global supply chains with random demands. Journal of Industrial and Management Optimization, 3(1), 99–117.

    Article  Google Scholar 

  • Spicer, B. H. (1988). Towards an organizational theory of the transfer pricing process. Accounting, Organizations and Society, 13(3), 303–322.

    Article  Google Scholar 

  • Vidal, C., & Goetschalckx, M. (2000). Modeling the effect of uncertainties on global logistics systems. Journal of Business Logistics, 21(1), 95–120.

    Google Scholar 

  • Villegas, F., & Ouenniche, J. (2008). A general unconstrained model for transfer pricing in multinational supply chains. European Journal of Operational Research, 187(3), 829–856.

    Article  Google Scholar 

  • Zimmerman, J. (2013). Accounting for decision making and control. New York: McGraw-Hill Education Companies Inc.

    Google Scholar 

Download references

Acknowledgements

I would like to thank Tan Miller for his insights and also for the industry data without which this study would not have been possible. This study has been supported by the Lary and Lori Wright Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato de Matta.

Appendix

Appendix

In this section we present Problem SP\('\). We introduce new variables to formulate this problem. In constraints (6), denote \(W_{ijk} \) to be the cost allocation of each unit produced by activity i in country j which is shipped to country k. Also let \(Y_{i-1\ell j} \) represent the cost of outbound shipment of products produced by activity \(i-1\) in country \(\ell \) for country j. We construct problem SP\('\) from Problem SP by replacing constraints (6) with equivalent Constraints (6–1), (6–2), and (6–3) as shown below.

We note that for Problem FAC, Constraints (5’) and (6’) must be rewritten in a similar way.

Next we eliminate the AGP variables by substituting (10) in (1) and (2). We also decompose Constraints (11) into two, i.e. Constraints (11-1) and (11-2). Problem SP\('\) is shown next. For ease of reference, we display the dual variable (represented by subscripted Greek letters) on the rightmost side of each corresponding primal constraint of Problem SP\('\).

Problem SP\('\):

Dual Variables

\( Z(X,V)=\mathop {{ Maximize}}\limits _{U,{ COST},{ MARKUP},S,W} \sum \limits _{j=1}^n {e}_j \left( \sum \limits _{i=1}^m \sum \limits _{k=1}^n {MARKUP_{ijk} } -\sum \limits _{i=1}^m {g_{ij} V_{ij}} +(S_j^+ - S_j^{-} )-U_j \right) \)

  

s.t.

  

\({ tax}_j \left[ \sum \limits _{i=1}^m {\sum \limits _{k=1}^n {MARKUP_{ijk} +(S_j^+ - S_j^- )} }\right] -U_j \le tax_j \sum \limits _{i=1}^m {g_{ij} V_{ij} } , \forall j=1\ldots n\)

(2)

\(\alpha _j\)

\({ COST}_{1jk} =c_{1j} X_{1jk}, \forall k=1,\ldots ,n, \forall j=1,\ldots ,n\),

(5)

\(\beta _{1jk}\)

\(COST_{ijk} =W_{ijk} +c_{ij} X_{ijk}, \forall k=1,\ldots ,n, \forall j=1,\ldots ,n, \forall i=2,\ldots m\),

(6-1)

\(\beta _{ijk}\)

\(W_{ijk} =\frac{X_{ijk}}{\sum \limits _{s=1}^n {X_{i-1sj}} }\sum \limits _{\ell =1}^n {(COST_{i-1\ell j} +MARKUP_{i-1\ell j} +r_{i-1\ell j} X_{i-1\ell j} )} , \forall k=1,\ldots ,n, \forall j=1,\ldots ,n, \forall i=2,\ldots m\),

(6-2)

\(\pi _{ijk}\)

\(Y_{i-1\ell j} =r_{i-1\ell j} X_{i-1\ell j} , \forall \ell =1,\ldots ,n, \forall j=1,\ldots ,n, \forall i=2,\ldots m\).

(6-3)

\(\varsigma _{i\ell j}\)

\(\sum \limits _{\ell =1}^n {(COST_{m\ell j} +MARKUP_{m\ell j} +r_{m\ell j} X_{m\ell j} )} +(S_j^+ - S_j^- )=\rho _j d_j , \forall j=1,\ldots ,n\),

(7)

\(\xi _j\)

\(\frac{COST_{ijk} +MARKUP_{ijk} }{X_{ijk}} = \frac{ COST_{ij\ell } +MARKUP_{ij\ell } }{X_{ij\ell }}, \forall j=1,\ldots n, \forall k=1,\ldots ,n, \forall \ell =1,\ldots ,n\), \(k\ne \ell ,\forall i=1,\ldots m\)

(8)

\(\phi _{ijk\ell }\)

\(\frac{COST_{i-1\ell j} +MARKUP_{i-1\ell j} }{X_{i-1\ell j}} \le \frac{\sum _{k=1}^n {(COST_{ijk} +MARKUP_{ijk} )} }{\sum _{k=1}^n {X_{ijk}} } , \forall \ell =1,\ldots n, \forall j=1,\ldots ,n, \forall i=2,\ldots ,m\)

(9)

\(\psi _{i\ell j}\)

\({ MARKUP}_{ijk} \hbox {-rmax}_{ij} COST_{ijk} \le 0, \forall j=1,\ldots n, \forall k=1,\ldots ,n, \forall i=1,\ldots m\),

(11-1)

\(\tau _{ijk}\)

\(MARKUP_{ijk} \hbox {-rmin}_{ij} COST_{ijk} \ge 0, \forall j=1,\ldots n\), \(\forall k=1,\ldots ,n, \forall i=1,\ldots m\),

(11-2)

\(\varphi _{ijk}\)

\(COST_{ijk} +MARKUP_{ijk} \le MX_{ijk}, \forall j=1,\ldots n, \forall k=1,\ldots ,n, \forall i=1,\ldots m\),

(12)

\(\gamma _{ijk}\)

\(MARKUP_{ijk} , COST_{ijk} ,U_j ,S_j^+ , S_j^- \ge 0, \forall j=1, 2,\ldots ,n\),

(13)

 

\(W_{ijk} \ge 0, \forall k=1,\ldots ,n, \forall j=1,\ldots ,n, \forall i=1,\ldots m\).

(17)

 

Let \(f(X,V,{ COST}, { MARKUP},U,S,W,Y)\) represent the objective function of Problem SP\('\) and \(G(X,V,{ COST}, { MARKUP}, U,S,W,Y)\ge 0\) the constraint set of Problem SP\('\). Denote the LP dual of Problem SP\('\) by Problem DSP\('\) and also let the set of dual variables \(\{\alpha ,\beta ,\pi ,\varsigma ,\xi ,\phi ,\psi ,\tau ,\varphi ,\gamma \}\) be represented by \(\mu \) for fixed (XV). The dual problem can be formulated as:

Problem DSP \('\):

$$\begin{aligned} Z(X,V)= & {} \mathop {\hbox {Minimize}}\limits _{\mu \ge 0} L(X,V,\mu ) , \hbox {where}\\ L(X,V,\mu )= & {} \mathop {\hbox {Maximize}}\limits _{{ COST},{ MARKUP},U,S,W,Y\ge 0} f(X,V,{ COST},{ MARKUP},U,S,W,Y)\\&+\, \mu G(X,V,{ COST}, { MARKUP},U,S,W,Y). \end{aligned}$$

Given (XV), let the primal optimal solution to Problem SP\('\) be represented by (\({ COST}^*, \textit{MARKUP}^*, U^*, S^*, W^*, Y^*\)) and its dual optimal solution by \(\mu ^*=\{\alpha ^*,\beta ^*,\pi ^*,\varsigma ^*,\xi ^*,\phi ^*,\psi ^*,\tau ^*,\varphi ^*,\gamma ^*\}\). These optimal solutions can be obtained easily by solving Problem SP\('\) directly using an LP solver. In this study, we used CPLEX (2002)’s LP solver. We substitute (\({ COST}^*, \textit{MARKUP}^*, U^*, S^*, W^*, Y^*\)) and \(\mu *\) in \(L(X,V,\mu )\). This yields a linear equation in variables Xand V. We note that \(f(X,V,COST,{ MARKUP},U,S,W,Y)\) and \(G(X,V,{ COST}, { MARKUP}, U,S,W,Y)\) need not be linearly separable in (XV) and (COST, MARKUP, U, S, W, Y). Moreover, the dual solution \(\mu *\) can be dependent on the values of (XV) (see Geoffrion 1972). The expansion of \(L(X,V,\mu )\) is

$$\begin{aligned}&L(X,V,\mu )\\&\quad =\mathop {\hbox {Maximize}}\limits _{{ COST},{ MARKUP},U,S,W\ge 0} \left\{ \sum _{j=1}^n {e}_j \left( \sum _{i=1}^m {\sum _{k=1}^n {{ MARKUP}_{ijk} } } -\sum _{i=1}^m {g_{ij} V_{ij}} +(S_j^+ - S_j^- )-U_j \right) \right. \\&\qquad +\sum _{j=1}^n \alpha _j \left( { tax}_j \left[ \sum _{i=1}^m {\sum _{k=1}^n {{ MARKUP}_{ijk} } } +S_j^+ -S_j^- \right] -U_j\right. \\&\left. \qquad -\,{ tax}_j \left( \sum _{i=1}^m {g_{ij} V_{ij} } +\sum _{i=1}^m {\sum _{k=1}^n {r_{ijk} X_{ijk} } } \right) \right) \\&\qquad +\sum _{k=1}^n {\sum _{j=1}^n {\beta _{1jk} ({ COST}_{1jk} -c_{1j} X_{1jk} )} } + \sum _{k=1}^n {\sum _{j=1}^n {\sum _{i=2}^m {\beta _{ijk} ({ COST}_{ijk} -W_{ijk} -c_{ij} X_{ijk} )} } } \\&\qquad +\sum _{k=1}^n {\sum _{j=1}^n {\sum _{i=2}^m {\pi _{ijk} \left( W_{ijk} \sum _{s=1}^n {X_{i-1sj}} -X_{ijk} \sum _{\ell =1}^n ({ COST}_{i-1\ell j} +{ MARKUP}_{i-1\ell j} +Y_{_{i-1\ell j} })\right) } } } \\&\qquad +\sum _{i=2}^m {\sum _{\ell =1}^n {\sum _{j=1}^n {\varsigma _{i-1\ell j} (Y_{i-1\ell j} -r_{i-1\ell j} } } } X_{i-1\ell j} ) \\&\qquad +\sum _{j=1}^n { \xi _j \left[ \sum _{\ell =1}^n {({ COST}_{m\ell j} +{ MARKUP}_{m\ell j} +r_{m\ell j} X_{m\ell j} )} +(S_j^+ - S_j^- )-\rho _j d_j \right] } \\&\qquad +\sum _{i=1}^m \sum _{j=1}^n \sum _{k=1}^n \sum _{ \ell =1, \ell \ne k}^n {\phi }_{{ ijk}\ell } (({ COST}_{ijk} +{ MARKUP}_{ijk} )X_{ij\ell }\\&\qquad - \,({ COST}_{ij\ell } +{ MARKUP}_{ij\ell } )X_{ijk} ) \\&\qquad +\sum \limits _{i=2}^m \sum \limits _{j=1}^n {\sum }_{\ell =1}^n {\psi }_{i\ell j} \left[ \sum _{k=1}^n X_{ijk} ( { COST}_{i-1\ell j} +{ MARKUP}_{i-1\ell j} )\right. \\&\left. \qquad -\,X_{i-1\ell j} \sum _{k=1}^n {({ COST}_{ijk} +} { MARKUP}_{ijk} ) \right] \\&\qquad +\sum _{i=1}^m {\sum _{j=1}^n {\sum _{k=1}^n {\tau _{ijk} \hbox {(}{} { MARKUP}_{ijk} -\hbox {rmax}_{ij} { COST}_{ijk} )} } }\\&\qquad + \sum _{i=1}^m {\sum _{j=1}^n {\sum _{k=1}^n {\varphi _{ijk} (\hbox {rmin}_{ij} { COST}_{ijk} -{ MARKUP}_{ijk} )} } } \\&\qquad \left. +\sum _{i=1}^m {\sum _{j=1}^n {\sum _{k=1}^n {\gamma _{ijk} ({ COST}_{ijk} +{ MARKUP}_{ijk} -MX_{ijk} )} } } \right\} . \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Matta, R. Product costing in the strategic formation of a supply chain. Ann Oper Res 272, 389–427 (2019). https://doi.org/10.1007/s10479-017-2463-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2463-x

Keywords

Navigation