Skip to main content
Log in

A modular capacitated multi-objective model for locating maritime search and rescue vessels

  • Multiple Objective Optimization
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper presents a mathematical multi-objective model to optimize the location-allocation of maritime search and rescue (SAR) vessels with regard to several criteria, including primary and backup coverage and mean access time. Atlantic Canada serves as the area of the study and the Canadian Coast Guard has provided the necessary datasets and information. A goal programming multi-objective model is developed to optimize the location and allocation of SAR vessels to potential future incidents in order to achieve greater level of responsiveness and coverage. Comparing the optimal solution found to the current arrangement of SAR vessels, shows a substantial improvement in terms of access time and coverage. The results of the study provide decision makers with valuable insights to make more informed strategic and tactical decisions for more efficient management of the SAR fleet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Search and Rescue Information Management System.

References

  • Abounacer, R., Rekik, M., & Renaud, J. (2014). An exact solution approach for multi-objective location-transportation problem for disaster response. Computers & Operations Research, 41, 83–93. doi:10.1016/j.cor.2013.08.001.

    Article  Google Scholar 

  • Afshartous, D., Guan, Y., & Mehrotra, A. (2009). US Coast Guard air station location with respect to distress calls: A spatial statistics and optimization based methodology. European Journal of Operational Research, 196(3), 1086–1096. doi:10.1016/j.ejor.2008.04.010.

    Article  Google Scholar 

  • Akbari, A., Eiselt, H. A., & Pelot, R. (2017). A maritime search and rescue location analysis considering multiple criteria, with simulated demand. INFOR: Information Systems and Operational Research, 1–23. doi:10.1080/03155986.2017.1334322.

  • Araz, C., Selim, H., & Ozkarahan, I. (2007). A fuzzy multi-objective covering-based vehicle location model for emergency services. Computers & Operations Research, 34(3), 705–726. doi:10.1016/j.cor.2005.03.021.

    Article  Google Scholar 

  • Armstrong, R. D., & Cook, W. D. (1979). Goal programming models for assigning search and rescue aircraft to bases. Operational Rsearch Society, 30(6), 555–561.

    Article  Google Scholar 

  • Badri, M. A. (1999). Combining the analytic hierarchy process and goal programming for global facility location-allocation problem. International Journal of Production Economics, 62(3), 237–248. doi:10.1016/S0925-5273(98)00249-7.

    Article  Google Scholar 

  • Badri, M. A., Mortagy, A. K., & Alsayed, C. A. (1998). A multi-objective model for locating fire stations. European Journal of Operational Research, 110(2), 243–260. doi:10.1016/S0377-2217(97)00247-6.

    Article  Google Scholar 

  • Bailey, T. C., & Gatrell, A. C. (1995). Interactive spatial data analysis. Harlow: Longman Scientific and Technical.

    Google Scholar 

  • Baker, J. R., Clayton, E. R., & Taylor, B. W. (1989). A non-linear multi-criteria programming approach for determining county emergency medical service ambulance allocations. The Journal of the Operational Research Society, 40(5), 423–432.

    Article  Google Scholar 

  • Balcik, B., & Beamon, B. M. (2008). Facility location in humanitarian relief. International Journal of Logistics Research and Applications, 11(2), 101–121. doi:10.1080/13675560701561789.

    Article  Google Scholar 

  • Bhattacharya, U., Rao, J. R., & Tiwari, R. N. (1993). Bi-criteria multi facility location problem in fuzzy environment. Fuzzy Sets and Systems, 56(2), 145–153. doi:10.1016/0165-0114(93)90139-9.

    Article  Google Scholar 

  • Blanquero, R., & Carrizosa, E. (2002). A D.C. biobjective location model. Journal of Global Optimization, 23, 139–154.

    Article  Google Scholar 

  • Brotcorne, L., Laporte, G., & Semet, F. (2003). Ambulance location and relocation models. European Journal of Operational Research, 147, 451–463.

    Article  Google Scholar 

  • Brown, G. G., Dell, R. F., & Farmer, R. A. (1996). Scheduling coast guard district cutters. Interfaces. Accessed April 18, 2016. doi:10.1287/inte.26.2.59.

  • Burkey, M. L., Bhadury, J., & Eiselt, H. A. (2012). A location-based comparison of health care services in four U.S. states with efficiency and equity. Socio Economic Planning Sciences, 46(2), 157–163. doi:10.1016/j.seps.2012.01.002.

    Article  Google Scholar 

  • Chen, G., Daskin, M. S., Shen, Z. M., & Uryasev, S. (2006). The \(\alpha \)-reliable mean-excess regret model for stochastic facility location modeling. Naval Research Logistics, 53(7), 617–626. doi:10.1002/nav.

    Article  Google Scholar 

  • Cho, C.-J. (1998). An equity-efficiency trade-off model for the optimum location of medical care facilities. Socio-economic Planning Sciences, 32(2), 99–112. doi:10.1016/S0038-0121(97)00007-4.

    Article  Google Scholar 

  • Chung, C. H., Schilling, D. A., & Carbone, R. (1983). The capacitated maximal covering problem: A heuristic. In Fourteenth Annual Pittsburg conference on modeling and simulation (pp. 1423–1428).

  • Church, R., & ReVelle, C. (1974). The maximal covering location problem. Papers of the Regional Science Association, 32, 101–118.

    Article  Google Scholar 

  • Correia, I., & Captivo, M. E. (2003). A Lagrangean heuristic for a modular capacitated location. Annals of Operations Research, 122(1), 141–161.

    Article  Google Scholar 

  • Current, J. R., Re Velle, C. S., & Cohon, J. L. (1985). The maximum covering/shortest path problem: A multiobjective network design and routing formulation. European Journal of Operational Research, 21(2), 189–199. doi:10.1016/0377-2217(85)90030-X.

    Article  Google Scholar 

  • Current, J. R., & Storbeck, J. E. (1988). Capacitated covering models. Environment & Planning B: Planning & Design, 15(2), 153–163. doi:10.1068/b150153.

    Article  Google Scholar 

  • Eiselt, H. A., & Marianov, V. (2014). A bi-objective model for the location of landfills for municipal solid waste. European Journal of Operational Research, 235(1), 187–194. doi:10.1016/j.ejor.2013.10.005.

    Article  Google Scholar 

  • Francis, R., Lowe, T., Rayco, M., & Tamir, A. (2009). Aggregation error for location models? Survey and analysis. Annals of Operations Research, 167(1), 171–208. doi:10.1007/s10479-008-0344-z.

    Article  Google Scholar 

  • Goldberg, J. B. (2004). Operations research models for the deployment of emergency services vehicles. EMS Management Journal, 1(1), 20–39.

    Google Scholar 

  • Haghani, A. (1996). Capacitated maximum covering location models: Formulations and solution procedures. Journal of Advanced Transportation, 30(3), 101–136. doi:10.1002/atr.5670300308.

    Article  Google Scholar 

  • Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 12(3), 450–459.

    Article  Google Scholar 

  • Harewood, S. I. (2002). Emergency ambulance deployment in Barbados: A multi-objective approach. The Journal of the Operational Research Society, 53(2), 185–192. doi:10.1057/sj/jors/2601250.

    Article  Google Scholar 

  • Ho, H., Chang, C., & Ku, C. (2013). On the location selection problem using analytic hierarchy process and multi-choice goal programming. International Journal of System Science, 44(1), 94–108. doi:10.1080/00207721.2011.581397.

    Article  Google Scholar 

  • Hogan, K., & ReVelle, C. (1986). Concepts and applications of backup coverage. Management Science, 32(11), 1434–1444. doi:10.1287/mnsc.32.11.1434.

    Article  Google Scholar 

  • Kim, K., & Murray, A. T. (2008). Enhancing spatial representation in primary and secondary coverage location modeling. Journal of Regional Science, 48(4), 745–768. doi:10.1111/j.1467-9787.2008.00575.x.

    Article  Google Scholar 

  • Kolokolov, A. A., & Zaozerskaya, L. A. (2013). Solving a bicriteria problem of optimal service centers location. Journal of Mathematical Modelling and Algorithms in Operations Research, 12(2), 105–116. doi:10.1007/s10852-012-9203-7.

    Article  Google Scholar 

  • Lee, S. M., Green, G. I., & Kim, C. S. (1981). A multiple criteria model for the location-allocation problem. Computers & Operations Research, 8(1), 1–8. doi:10.1016/0305-0548(81)90026-5.

    Article  Google Scholar 

  • Lloyd, C. D. (2010). Spatial data analysis: An introduction for GIS users. Oxford: Oxford university press.

    Google Scholar 

  • Malczewski, J., & Ogryczak, W. (1996). The multiple criteria location problem: 2. Preference-based techniques and interactive decision support. Environment and Planning A, 28(1), 69–98. http://www.scopus.com/inward/record.url?eid~=~2-s2.0-0029818234&partnerID~=~tZOtx3y1.

  • Marianov, V., & Serra, D. (2002). Location problems in the public sector. In Z. Drezner & H. W. Hamacher (Eds.), Facility location: Applications and theory (pp. 119–150). Berlin: Springer.

    Chapter  Google Scholar 

  • Melachrinoudis, E., & Min, H. (2000). Dynamic relocation and phase-out of a hybrid, two-echelon plant/warehousing facility: A multiple objective approach. European Journal of Operational Research, 123(1), 1–15. doi:10.1016/S0377-2217(99)00166-6.

    Article  Google Scholar 

  • Nelson, C., Boros, E., Roberts, F., Rubio-Herrero, J., Kantor, P., McGinity, C., et al. (2014). ACCAM global optimization model for the USCG aviation air stations. IIE annual conference and expo (pp. 2761–2770).

  • Nguyen, B. U., & Kevin, Y. K. (2000). Modeling Canadian search and rescue operations. University of Ottawa.

  • Ohsawa, Y. (1999). A geometrical solution for quadratic bicriteria location models. European Journal of Operational Research, 114(2), 380–388. http://www.scopus.com/inward/record.url?eid~=~2-s2.0-0033115045&partnerID~=~tZOtx3y1.

  • Ohsawa, Y., Plastria, F., & Tamura, K. (2006). Euclidean push–pull partial covering problems. Computers & Operations Research, 33(12), 3566–3582. doi:10.1016/j.cor.2005.03.034.

    Article  Google Scholar 

  • Owen, S. H., & Daskin, M. S. (1998). Strategic facility location: A review. European Journal of Operational Research, 111, 423–447. doi:10.1016/S0377-2217(98)00186-6.

    Article  Google Scholar 

  • Pelot, R., Akbari, A., & Li, L. (2015). Vessel location modeling for maritime search and rescue. In H. A. Eiselt & V. Marianov (Eds.), Applications of location analysis (1st ed., pp. 369–402). Berlin: Springer. doi:10.1007/978-1-4614-1900-6.

    Chapter  Google Scholar 

  • Pirkul, H., & Schilling, D. (1988). The siting of emergency service facilities with workload capacities and backup service. Management Science, 34(7), 896–908. doi:10.1287/mnsc.34.7.896.

    Article  Google Scholar 

  • Radovilsky, Z., & Koermer, T. (2007). Allocation of U.S. coast guard boats utilizing integer programming. Journal of Academy of Business and Economics, 7(2), 130–135.

    Google Scholar 

  • Rahmati, S. H. A., Hajipour, V., & Niaki, S. T. A. (2013). A soft-computing Pareto-based meta-heuristic algorithm for a multi-objective multi-server facility location problem. Applied Soft Computing, 13(4), 1728–1740. doi:10.1016/j.asoc.2012.12.016.

    Article  Google Scholar 

  • Razi, N., & Karatas, M. (2016). A multi-objective model for locating search and rescue boats. European Journal of Operational Research, 254(1), 279–293. doi:10.1016/j.ejor.2016.03.026.

    Article  Google Scholar 

  • Razi, N., Karatas, M., & M.Gunal, M. (2016). A combined optimization and simulation based methodology for locating search and rescue helicopters. In The 49th annual simulation symposium: society for modeling & simulation international.

  • Ross, G. T., & Soland, R. M. (1980). A multicriteria approach to the location of public facilities. European Journal of Operational Research, 4(5), 307–321. doi:10.1016/0377-2217(80)90142-3.

    Article  Google Scholar 

  • San Cristóbal, J. R. (2012). A goal programming model for the optimal mix and location of renewable energy plants in the north of Spain. Renewable and Sustainable Energy Reviews, 16(7), 4461–4464. doi:10.1016/j.rser.2012.04.039.

    Article  Google Scholar 

  • Snyder, L. V. (2006). Facility location under uncertainty: A review. IIE Transactions, 38(7), 547–564. doi:10.1080/07408170500216480.

    Article  Google Scholar 

  • Solanki, R. (1991). Generating the noninferior set in mixed integer biobjective linear programs: An application to a location problem. Computers & Operations Research, 18(1), 1–15. doi:10.1016/0305-0548(91)90037-R.

    Article  Google Scholar 

  • Wagner, M. R., & Radovilsky, Z. (2012). Optimizing boat resources at the U.S. Coast Guard: Deterministic and stochastic models. Operations Research, 60(5), 1035–1049. doi:10.1287/opre.1120.1085.

    Article  Google Scholar 

  • Yin, P., & Mu, L. (2012). Modular capacitated maximal covering location problem for the optimal siting of emergency vehicles. Applied Geography, 34, 247–254. doi:10.1016/j.apgeog.2011.11.013.

    Article  Google Scholar 

  • Zhang, J.-H., Li, J., & Liu, Z.-P. (2012). Multiple-resource and multiple-depot emergency response problem considering secondary disasters. Expert Systems with Applications, 39(12), 11066–11071. doi:10.1016/j.eswa.2012.03.016.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our thanks to the Natural Sciences and Engineering Research Council of Canada for their support of this study. Also, we extend our appreciation to ACENET, the regional advanced research computing consortium for universities in Atlantic Canada for their financial support and computational resources. A sincere thanks is extended to the Canadian Coast Guard for sharing their data, but most importantly for providing guidance on their operations and priorities. We are also grateful to the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Akbari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, A., Pelot, R. & Eiselt, H.A. A modular capacitated multi-objective model for locating maritime search and rescue vessels. Ann Oper Res 267, 3–28 (2018). https://doi.org/10.1007/s10479-017-2593-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2593-1

Keywords

Navigation