Skip to main content
Log in

Models and computational algorithms for maritime risk analysis: a review

  • Original - Survey or Exposition
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Due to the undesirable implications of maritime mishaps such as ship collisions and the consequent damages to maritime property; the safety and security of waterways, ports and other maritime assets are of the utmost importance to authorities and researches. Terrorist attacks, piracy, accidents and environmental damages are some of the concerns. This paper provides a detailed literature review of over 180 papers about different threats, their consequences pertinent to the maritime industry, and a discussion on various risk assessment models and computational algorithms. The methods are then categorized into three main groups: statistical, simulation and optimization models. Corresponding statistics of papers based on year of publication, region of case studies and methodology are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acharya, T. D., Yoo, K. W., & Lee, D. H. (2017). Gis-based spatio-temporal analysis of marine accidents database in the coastal zone of korea. Journal of Coastal Research, 79(sp1), 114–118.

    Google Scholar 

  • Afenyo, M., Khan, F., Veitch, B., & Yang, M. (2017). Arctic shipping accident scenario analysis using bayesian network approach. Ocean Engineering, 133, 224–230.

    Google Scholar 

  • Ahn, J.-H., Rhee, K.-P., & You, Y.-J. (2012). A study on the collision avoidance of a ship using neural networks and fuzzy logic. Applied Ocean Research, 37, 162–173.

    Google Scholar 

  • Ahola, M., Murto, P., Kujala, P., & Pitkänen, J. (2014). Perceiving safety in passenger ships-User studies in an authentic environment. Safety science, 70, 222–232.

    Google Scholar 

  • Akhtar, M. J., & Utne, I. B. (2014a). Human fatigue’s effect on the risk of maritime groundings—A Bayesian Network modeling approach. Safety science, 62, 427–440.

    Google Scholar 

  • Akhtar, M. J., & Utne, I. B. (2014). Reducing the probability of ship grounding: Which measure to undertake? WMU Journal of Maritime Affairs, 13(1), 27–42.

    Google Scholar 

  • Akten, N. (2004). Analysis of shipping casualties in the Bosphorus. Journal of Navigation, 57(3), 345–356.

    Google Scholar 

  • Akyuz, E. (2015). A hybrid accident analysis method to assess potential navigational contingencies: The case of ship grounding. Safety Science, 79, 268–276.

    Google Scholar 

  • Akyuz, E., & Celik, M. (2014). Utilisation of cognitive map in modelling human error in marine accident analysis and prevention. Safety Science, 70, 19–28.

    Google Scholar 

  • Alexander, L., Lee, S., Baranowski, A., & Porathe, T. (2013). Harmonised portrayal of e-navigation-related information. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 7(1), 39–43.

    Google Scholar 

  • Altay, N., & Green, W. G. (2006). OR/MS research in disaster operations management. European Journal of Operational Research, 175(1), 475–493.

    Google Scholar 

  • Ancuţa, C., Stanca, C., Andrei, C. & Acomi, N. (2017). Behavior analysis of container ship in maritime accident in order to redefine the operating criteria. In IOP conference series: Materials science and engineering (Vol. 227, pp. 012004). IOP Publishing.

  • Arslan, O., & Turan, O. (2009). Analytical investigation of marine casualties at the Strait of Istanbul with SWOT-AHP method. Maritime Policy & Management, 36(2), 131–145.

    Google Scholar 

  • Aydogdu, Y., Yurtoren, C., Park, J.-S., & Park, Y.-S. (2012). A study on local traffic management to improve marine traffic safety in the Istanbul Strait. Journal of Navigation, 65(1), 99–112.

    Google Scholar 

  • Bal, E., Arslan, O., & Tavacioglu, L. (2015). Prioritization of the causal factors of fatigue in seafarers and measurement of fatigue with the application of the lactate test. Safety Science, 72, 46–54.

    Google Scholar 

  • Balmat, J.-F., Lafont, F., Maifret, R., & Pessel, N. (2011). A decision-making system to maritime risk assessment. Ocean Engineering, 38(1), 171–176.

    Google Scholar 

  • Başar, E. (2010). Investigation into marine traffic and a risky area in the turkish straits system: Canakkale strait. Transport, 25(1), 5–10.

    Google Scholar 

  • Belamarić, G., Kurtela, Ž., & Bošnjak, R. (2016). Simulation method-based oil spill pollution risk analysis for the port of šibenik. Transactions on Maritime Science, 5(02), 141–154.

    Google Scholar 

  • Benedict, K., Kirchhoff, M., Gluch, M., Fischer, S., Schaub, M., & Baldauf, M. (2016). Simulation-augmented methods for safe and efficient manoeuvres in harbour areas. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 10, 193–201.

    Google Scholar 

  • Bruzzone, A., Mosca, R., Revetria, R., & Rapallo, S. (2000). Risk analysis in harbor environments using simulation. Safety Science, 35(1), 75–86.

    Google Scholar 

  • Butt, N., Johnson, D., Pike, K., Pryce-Roberts, N., & Vigar, N. (2012). 15 years of shipping accidents: A review for WWF.

  • Celik, M., Lavasani, S. M., & Wang, J. (2010). A risk-based modelling approach to enhance shipping accident investigation. Safety Science, 48(1), 18–27.

    Google Scholar 

  • Ceyhun, G. C. (2014). The impact of shipping accidents on marine environment: A study of Turkish seas. European Scientific Journal, 10(23),

  • Chai, T., Weng, J., & De-qi, X. (2017). Development of a quantitative risk assessment model for ship collisions in fairways. Safety Science, 91, 71–83.

    Google Scholar 

  • Chauvin, C., Lardjane, S., Morel, G., Clostermann, J.-P., & Langard, B. (2013). Human and organisational factors in maritime accidents: Analysis of collisions at sea using the HFACS. Accident Analysis & Prevention, 59, 26–37.

    Google Scholar 

  • Chick, S. E. (2004). Bayesian methods for discrete event simulation. In Proceedings of the 2004 winter simulation conference (Vol. 1).

  • Chin, H. C., & Debnath, A. K. (2009). Modeling perceived collision risk in port water navigation. Safety Science, 47(10), 1410–1416.

    Google Scholar 

  • Chlomoudis, C. I., Pallis, P. L., & Tzannatos, E. S. (2016). A risk assessment methodology in container terminals: The case study of the port container terminal of thessalonica, Greece. Journal of Traffic and Transportation Engineering, 4, 251–258.

    Google Scholar 

  • Chou, C.-C., Su, Y.-L., Li, R.-F., Tsai, C.-L., & Ding, J.-F. (2015). Key navigation safety factors in taiwanese harbors and surrounding waters. Journal of Marine Science and Technology, 23(5), 685–693.

    Google Scholar 

  • Christian, R., & Kang, H. G. (2017). Probabilistic risk assessment on maritime spent nuclear fuel transportation (part ii: Ship collision probability). Reliability Engineering & System Safety, 164, 136–149.

    Google Scholar 

  • Corbett, C. J., & Van Wassenhove, L. N. (1993). The natural drift: What happened to operations research? Operations Research, 41(4), 625–640.

    Google Scholar 

  • Curtis, R. G. (1986). A ship collision model for overtaking. Journal of the Operational Research Society, 37, 397–406.

    Google Scholar 

  • Debnath, A. K., & Chin, H. C. (2010). Navigational traffic conflict technique: A proactive approach to quantitative measurement of collision risks in port waters. Journal of Navigation, 63(1), 137.

    Google Scholar 

  • Degre, T., Glansdorp, C., & van der Tak, C. (2003). The importance of a risk based index for vessels to enhance maritime safety. In Proceedings of the 10th IFAC Symposium on Control in transportation Systems. Tokyo, Japan.

    Google Scholar 

  • Denizel, M., Usdiken, B., & Tuncalp, D. (2003). Drift or shift? Continuity, change, and international variation in knowledge production in OR/MS. Operations Research, 51(5), 711–720.

    Google Scholar 

  • Dong, Y., & Frangopol, D. M. (2015). Probabilistic ship collision risk and sustainability assessment considering risk attitudes. Structural Safety, 53, 75–84.

    Google Scholar 

  • Ece, N. J., Sozen, A., Akten, C. N., & Erol, S. (2007). The strait of istanbul: A tricky conduit for safe navigation. European Journal of Nabigation, 5(1), 46–55.

    Google Scholar 

  • Eide, M. S., Endresen, Ø., Breivik, Ø., Brude, O. W., Ellingsen, I. H., Røang, K., et al. (2007). Prevention of oil spill from shipping by modelling of dynamic risk. Marine Pollution Bulletin, 54(10), 1619–1633.

    Google Scholar 

  • Elentably, A. (2013). The positive implications for the application of the international ship & port facility security and its reflects on saudis ports. In Marine navigation and safety of sea transportation: Maritime transport & shipping (p. 143).

    Google Scholar 

  • Eleye-Datubo, A., Wall, A., Saajedi, A., & Wang, J. (2006). Enabling a powerful marine and offshore decision-support solution through bayesian network technique. Risk Analysis, 26(3), 695–721.

    Google Scholar 

  • Faghih-Roohi, S., Xie, M., & Ng, K. M. (2014). Accident risk assessment in marine transportation via markov modelling and markov chain monte carlo simulation. Ocean Engineering, 91, 363–370.

    Google Scholar 

  • Fallahzadeh, M., Moghaddam, M., & Talebnezhad, H. (2017). Evaluating safety control criteria in maritime traffic using formal safety assessment (case study: Iranian port; bushehr). Journal of Maritime Research, 12(3), 37–48.

    Google Scholar 

  • Fernandes, R., Braunschweig, F., Lourenço, F., & Neves, R. (2015). Combining operational models and data into a dynamic vessel risk assessment tool for coastal regions. Ocean Science Discussions, 12, 1327–1388.

    Google Scholar 

  • Fernandes, R., Braunschweig, F., Lourenço, F., & Neves, R. (2016). Combining operational models and data into a dynamic vessel risk assessment tool for coastal regions. Ocean Science, 12(1), 285.

    Google Scholar 

  • Fowler, T. G., & Sørgård, E. (2000). Modeling ship transportation risk. Risk Analysis, 20(2), 225–244.

    Google Scholar 

  • Fu, S., Zhang, D., Montewka, J., Yan, X., & Zio, E. (2016). Towards a probabilistic model for predicting ship besetting in ice in arctic waters. Reliability Engineering & System Safety, 155, 124–136.

    Google Scholar 

  • Galindo, G., & Batta, R. (2013). Review of recent developments in OR/MS research in disaster operations management. European Journal of Operational Research, 230(2), 201–211.

    Google Scholar 

  • Gan, G.-Y., Lee, H.-S., Chung, C.-C., & Chen, S.-L. (2017). Performance evaluation of the security management of changjiang maritime safety administrations: Application with undesirable outputs in data envelopment analysis. Journal of Marine Science and Technology, 25(2), 213–219.

    Google Scholar 

  • Gaonkar, R. S. P., Xie, M., & Fu, X. (2013). Reliability estimation of maritime transportation: A study of two fuzzy reliability models. Ocean Engineering, 72, 1–10.

    Google Scholar 

  • Garcia, D. A., Bruschi, D., Cumo, F., & Gugliermetti, F. (2013). The oil spill hazard index (oshi) elaboration. An oil spill hazard assessment concerning italian hydrocarbons maritime traffic. Ocean & Coastal Management, 80, 1–11.

    Google Scholar 

  • Ghafoori, A., & Altiok, T. (2012). A mixed integer programming framework for sonar placement to mitigate maritime security risk. Journal of Transportation Security, 5(4), 253–276.

    Google Scholar 

  • Goerlandt, F., Montewka, J., & Kujala, P. (2014). Tools for an Extended Risk assessment for Ropax Ship-Ship Collision, In Second international conference on vulnerability and risk analysis and management (ICVRAM) & Sixth international symposium on uncertainty modelling and analysis (ISUMA), Liverpool.

  • Goerlandt, F., & Kujala, P. (2011). Traffic simulation based ship collision probability modeling. Reliability Engineering & System Safety, 96(1), 91–107.

    Google Scholar 

  • Goerlandt, F., & Kujala, P. (2014). On the reliability and validity of ship-ship collision risk analysis in light of different perspectives on risk. Safety Science, 62, 348–365.

    Google Scholar 

  • Goerlandt, F., & Montewka, J. (2014). A probabilistic model for accidental cargo oil outflow from product tankers in a ship-ship collision. Marine Pollution Bulletin, 79(1), 130–144.

    Google Scholar 

  • Goerlandt, F., Montewka, J., Zhang, W., & Kujala, P. (2017). An analysis of ship escort and convoy operations in ice conditions. Safety Science, 95, 198–209.

    Google Scholar 

  • Goerlandt, F., Ståhlberg, K., & Kujala, P. (2012). Influence of impact scenario models on collision risk analysis. Ocean Engineering, 47, 74–87.

    Google Scholar 

  • Goldberg, N., Word, J., Boros, E., & Kantor, P. (2008). Optimal sequential inspection policies. Annals of Operations Research, also RUTCOR Research Report pp. 14–2008.

  • Grabowski, M., Merrick, J. R., Harrold, J., Massuchi, T., & van Dorp, J. (2000). Risk modeling in distributed, large-scale systems. Systems, Man and Cybernetics, Part A: Systems and Humans, 30(6), 651–660.

    Google Scholar 

  • Gucma, L., & Przywarty, M. (2007). The model of oil spills due to ships collisions in Southern Baltic area. In 7th international navigational symposium on marine navigation and safety of sea transportation TransNav.

  • Hänninen, M., & Kujala, P. (2009). The effects of causation probability on the ship collision statistics in the Gulf of Finland. In Marine navigation and safety of sea transportation (pp. 267–272). London: Taylor and Francis.

  • Hänninen, M., Mazaheri, A., Kujala, P., Montewka, J., Laaksonen, P., Salmiovirta, M., & Klang, M. (2013), Expert elicitation of a navigation service implementation effects on ship groundings and collisions in the gulf of finland. In Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability pp. 1748006X13494533.

  • Hänninen, M., Banda, O. A. V., & Kujala, P. (2014). Bayesian network model of maritime safety management. Expert Systems with Applications, 41(17), 7837–7846.

    Google Scholar 

  • Hänninen, M., & Kujala, P. (2012). Influences of variables on ship collision probability in a bayesian belief network model. Reliability Engineering & System Safety, 102, 27–40.

    Google Scholar 

  • Hara, K., & Nakamura, S. (1995). A comprehensive assessment system for the maritime traffic environment. Safety Science, 19(2), 203–215.

    Google Scholar 

  • Harrald, J. R., Mazzuchi, T., Spahn, J., Van Dorp, R., Merrick, J., Shrestha, S., et al. (1998). Using system simulation to model the impact of human error in a maritime system. Safety Science, 30(1), 235–247.

    Google Scholar 

  • Hassel, M., Asbjørnslett, B. E., & Hole, L. P. (2011). Underreporting of maritime accidents to vessel accident databases. Accident Analysis & Prevention, 43(6), 2053–2063.

    Google Scholar 

  • Heij, C., Bijwaard, G. E., & Knapp, S. (2011). Ship inspection strategies: Effects on maritime safety and environmental protection. Transportation Research Part D: Transport and Environment, 16(1), 42–48.

    Google Scholar 

  • Hilgert, H., & Baldauf, M. (1997). A common risk model for the assessment of encounter situations on board ships. Deutsche Hydrografische Zeitschrift, 49(4), 531–542.

    Google Scholar 

  • Hsu, W. -K. K. (n.d.), Assessing the safety factors of ship berthing operations. Journal of Navigation pp. 1–13.

  • Hu, S., Fang, Q., Xia, H., & Xi, Y. (2007). Formal safety assessment based on relative risks model in ship navigation. Reliability Engineering & System Safety, 92(3), 369–377.

    Google Scholar 

  • Iakovou, E. T. (2001). An interactive multiobjective model for the strategic maritime transportation of petroleum products: Risk analysis and routing. Safety Science, 39(1), 19–29.

    Google Scholar 

  • Ince, A., & Topuz, E. (2004). Modelling and simulation for safe and efficient navigation in narrow waterways. Journal of Navigation, 57(1), 53–71.

    Google Scholar 

  • Inoue, K., & Kawase, M. (2007). Innovative probabilistic prediction of accident occurrence. In Marine navigation and safety of sea transportation (pp. 31–34). London

  • Inoue, K. (2000). Evaluation method of ship-handling difficulty for navigation in restricted and congested waterways. Journal of Navigation, 53(01), 167–180.

    Google Scholar 

  • Jansson, J., & Gustafsson, F. (2008). A framework and automotive application of collision avoidance decision making. Automatica, 44(9), 2347–2351.

    Google Scholar 

  • John, A., Paraskevadakis, D., Bury, A., Yang, Z., Riahi, R., & Wang, J. (2014). An integrated fuzzy risk assessment for seaport operations. Safety Science, 68, 180–194.

    Google Scholar 

  • Jolma, A., Lehikoinen, A., Helle, I., & Venesjärvi, R. (2014). A software system for assessing the spatially distributed ecological risk posed by oil shipping. Environmental Modelling & Software, 61, 1–11.

    Google Scholar 

  • Kaneko, F. (2002). Methods for probabilistic safety assessments of ships. Journal of Marine Science and Technology, 7(1), 1–16.

    Google Scholar 

  • Kang, H. J., Yang, Y.-S., Choi, J., Lee, J.-K., & Lee, D. (2013). Time basis ship safety assessment model for a novel ship design. Ocean Engineering, 59, 179–189.

    Google Scholar 

  • Kao, S.-L., Lee, K.-T., Chang, K.-Y., Ko, M.-D., et al. (2007). A fuzzy logic method for collision avoidance in vessel traffic service. Journal of Navigation, 60(1), 17–31.

    Google Scholar 

  • Klemola, E., Kuronen, J., Kalli, J., Arola, T., Hanninen, M., Lehikoinen, A., et al. (2009). A cross-disciplinary approach to minimising the risks of maritime transport in the gulf of finland. World Review of Intermodal Transportation Research, 2(4), 343–363.

    Google Scholar 

  • Kujala, P., Hänninen, M., Arola, T., & Ylitalo, J. (2009). Analysis of the marine traffic safety in the gulf of finland. Reliability Engineering & System Safety, 94(8), 1349–1357.

    Google Scholar 

  • Kum, S., & Sahin, B. (2015). A root cause analysis for arctic marine accidents from 1993 to 2011. Safety science, 74, 206–220.

    Google Scholar 

  • Lehikoinen, A., Hanninen, M., Storgard, J., Luoma, E., Mantyniemi, S., & Kuikka, S. (2015). A bayesian network for assessing the collision induced risk of an oil accident in the gulf of finland. Environmental Science & Technology, 49(9), 5301–5309.

    Google Scholar 

  • Li, S., Meng, Q., & Qu, X. (2012). An overview of maritime waterway quantitative risk assessment models. Risk Analysis, 32(3), 496–512.

    Google Scholar 

  • Liu, Y., Yang, C., Yang, Y., Lin, F., Du, X., & Ito, T. (2012). Case learning for CBR-based collision avoidance systems. Applied Intelligence, 36(2), 308–319.

    Google Scholar 

  • Liwång, H. (2015). Survivability of an ocean patrol vessel-analysis approach and uncertainty treatment. Marine Structures, 43, 1–21.

    Google Scholar 

  • Liwång, H., Ringsberg, J. W., & Norsell, M. (2013). Quantitative risk analysis-ship security analysis for effective risk control options. Safety Science, 58, 98–112.

    Google Scholar 

  • Martínez de Osés, F. X., & Ventikos, N. P. (2006). A critical assessment of human element regarding maritime safety.

  • Martins, M. R., & Maturana, M. C. (2010). Human error contribution in collision and grounding of oil tankers. Risk Analysis, 30(4), 674–698.

    Google Scholar 

  • Marx, J. D., & Cornwell, J. B. (2009). The importance of weather variations in a quantitative risk analysis. Journal of Loss Prevention in the Process Industries, 22(6), 803–808.

    Google Scholar 

  • Mazaheri, A., Montewka, J., & Kujala, P. (2014). Modeling the risk of ship grounding-a literature review from a risk management perspective. WMU Journal of Maritime Affairs, 13(2), 269–297.

    Google Scholar 

  • McLay, L. A., & Dreiding, R. (2012). Multilevel, threshold-based policies for cargo container security screening systems. European Journal of Operational Research, 220(2), 522–529.

    Google Scholar 

  • Mentes, A., Akyildiz, H., Yetkin, M., & Turkoglu, N. (2015). A fsa based fuzzy dematel approach for risk assessment of cargo ships at coasts and open seas of turkey. Safety Science, 79, 1–10.

    Google Scholar 

  • Merrick, J. R., van Dorp, J. R., Mazzuchi, T. A., & Harrald, J. R. (2001). Modeling risk in the dynamic environment of maritime transportation. In Proceedings of the 33rd conference on Winter simulation (pp. 1090–1098). IEEE Computer Society.

  • Merrick, J. R., & Van Dorp, R. (2006). Speaking the truth in maritime risk assessment. Risk Analysis, 26(1), 223–237.

    Google Scholar 

  • Merrick, J. R., Van Dorp, J. R., Blackford, J. P., Shaw, G. L., Harrald, J., & Mazzuchi, T. A. (2003). A traffic density analysis of proposed ferry service expansion in San Francisco Bay using a maritime simulation model. Reliability Engineering & System Safety, 81(2), 119–132.

    Google Scholar 

  • Merrick, J. R., van Dorp, J. R., Harrald, J., Mazzuchi, T., Spahn, J. E., Grabowski, M., et al. (2000). A systems approach to managing oil transportation risk in Prince William Sound. Systems Engineering, 3(3), 128–142.

    Google Scholar 

  • Merrick, J. R., van Dorp, J. R., & Singh, A. (2005). Analysis of correlated expert judgments from extended pairwise comparisons. Decision Analysis, 2(1), 17–29.

    Google Scholar 

  • Mokhtari, K., Ren, J., Roberts, C., & Wang, J. (2011). Application of a generic bow-tie based risk analysis framework on risk management of sea ports and offshore terminals. Journal of Hazardous Materials, 192(2), 465–475.

    Google Scholar 

  • Mokhtari, K., Ren, J., Roberts, C., & Wang, J. (2012). Decision support framework for risk management on sea ports and terminals using fuzzy set theory and evidential reasoning approach. Expert Systems with Applications, 39(5), 5087–5103.

    Google Scholar 

  • Montewka, J., Ehlers, S., & Tabri, K. (n.d.), Elements of risk analysis for LNG tanker maneuvering with tug assistance in a harbor.

  • Montewka, J., Ehlers, S., Goerlandt, F., Hinz, T., Tabri, K., & Kujala, P. (2014). A framework for risk assessment for maritime transportation systems—A case study for open sea collisions involving RoPax vessels. Reliability Engineering & System Safety, 124, 142–157.

    Google Scholar 

  • Montewka, J., Goerlandt, F., & Kujala, P. (2012). Determination of collision criteria and causation factors appropriate to a model for estimating the probability of maritime accidents. Ocean Engineering, 40, 50–61.

    Google Scholar 

  • Montewka, J., Goerlandt, F., & Kujala, P. (2014). On a systematic perspective on risk for formal safety assessment (FSA). Reliability Engineering & System Safety, 127, 77–85.

    Google Scholar 

  • Montewka, J., Hinz, T., Kujala, P., & Matusiak, J. (2010). Probability modelling of vessel collisions. Reliability Engineering & System Safety, 95(5), 573–589.

    Google Scholar 

  • Montewka, J., Krata, P., Goerlandt, F., Mazaheri, A., & Kujala, P. (2011). Marine traffic risk modelling—An innovative approach and a case study. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 225(3), 307–322.

    Google Scholar 

  • Mou, J. M., van der Tak, C., & Ligteringen, H. (2010). Study on collision avoidance in busy waterways by using AIS data. Ocean Engineering, 37(5), 483–490.

    Google Scholar 

  • Mullai, A., & Paulsson, U. (2011). A grounded theory model for analysis of marine accidents. Accident Analysis & Prevention, 43(4), 1590–1603.

    Google Scholar 

  • Mulyadi, Y., Kobayashi, E., Wakabayashi, N., Pitana, T., et al. (2014). Development of ship sinking frequency model over Subsea Pipeline for Madura Strait using AIS data. WMU Journal of Maritime Affairs, 13(1), 43–59.

    Google Scholar 

  • Nikula, P., & Tynkkynen, V. -P. (2007). Risks in oil transportation in the Gulf of Finland: Not a question of if-but when. Towards a Baltic Sea Region Strategy in Critical Infrastructure Protection, Stockholm: Nordregio (pp. 141–64).

  • Nishimura, S., & Kobayashi, E. (2013). Construction of the safety route search system contributes to reduce marine accident. The Journal of Japan Institute of Navigation128.

  • Nwaoha, T. C., Yang, Z., Wang, J., & Bonsall, S. (2013). Adoption of new advanced computational techniques to hazards ranking in lng carrier operations. Ocean Engineering, 72, 31–44.

    Google Scholar 

  • Onwuegbuchunam, D. E. (2013). An analysis of determinants of accident involving marine vessels in nigerias waterways. Management Science and Engineering, 7(3), 39–45.

    Google Scholar 

  • Ors, H. (2003). Oil transport in the turkish straits system: A simulation of contamination in the Istanbul Strait. Energy Sources, 25(11), 1043–1052.

    Google Scholar 

  • Ors, H. (2004). Oil transport in the Turkish Straits system, part II: A simulation of contamination in the Dardanelles strait. Energy Sources, 26(2), 167–175.

    Google Scholar 

  • Otay, E., & Özkan, S. (2003). Stochastic prediction of maritime accidents in the strait of Istanbul. In Proceedings of the 3rd international conference on oil spills in the Mediterranean and Black Sea regions (pp. 92–104).

  • Otto, S., Pedersen, P. T., Samuelides, M., & Sames, P. C. (2002). Elements of risk analysis for collision and grounding of a RoRo passenger ferry. Marine Structures, 15(4), 461–474.

    Google Scholar 

  • Ozbas, B. (2013). Safety risk analysis of maritime transportation. Transportation Research Record: Journal of the Transportation Research Board, 2326(1), 32–38.

    Google Scholar 

  • Pedersen, P. T. (1995). Collision and grounding mechanics. In West European Confederation of Maritime Technology Societies (WEMT).

  • Pedersen, P. T. (2010). Review and application of ship collision and grounding analysis procedures. Marine Structures, 23(3), 241–262.

    Google Scholar 

  • Pelto, E. (2003). Environmental risk of the increasing oil transportation in the gulf of finland. Electronic publications of the Pan-European Institute, 1, 2003.

    Google Scholar 

  • Pietrzykowski, Z., & Uriasz, J. (2009). The ship domain-a criterion of navigational safety assessment in an open sea area. Journal of Navigation, 62(1), 93.

    Google Scholar 

  • Praetorius, G., Hollnagel, E., & Dahlman, J. (2015). Modelling vessel traffic service to understand resilience in everyday operations. Reliability Engineering & System Safety, 141, 10–21.

    Google Scholar 

  • Qu, X., Meng, Q., & Suyi, L. (2011). Ship collision risk assessment for the Singapore Strait. Accident Analysis & Prevention, 43(6), 2030–2036.

    Google Scholar 

  • Quy, N., Vrijling, J., & Van Gelder, P. (2008). Risk-and simulation-based optimization of channel depths: Entrance channel of cam pha coal port. Simulation, 84(1), 41–55.

    Google Scholar 

  • Razmjooee, Y. (2012). Risks related to the maritime transportation of oil and gas (mainly crude oil, LPG, and LNG)—A conceptual study and empirical outlook on the Baltic Sea and UK territorial waters to mitigate risks.

  • Reason, J. (1997). Managing the human and organizational response to accidents. Toronto: Brookfield.

    Google Scholar 

  • Ren, J., Jenkinson, I., Wang, J., Xu, D., & Yang, J. (2009). An offshore risk analysis method using fuzzy bayesian network. Journal of Offshore Mechanics and Arctic Engineering, 131(4), 41101.

    Google Scholar 

  • Roeleven, D., Kokc, M., Stipdonk, H., & De Vries, W. (1995). Inland waterway transport: Modelling the probability of accidents. Safety Science, 19(2), 191–202.

    Google Scholar 

  • Rosqvist, T., Nyman, T., Sonninen, S., & Tuominen, R. (2002). The implementation of the VTMIS system for the Gulf of Finland-a FSA study. In RINA International conference on formal safety assessment, Citeseer.

  • Sahin, B., & Kum, S. (2015). Risk assessment of arctic navigation by using improved fuzzy-ahp approach. International Journal of Maritime Engineering, 157, 241–250.

    Google Scholar 

  • Sahin, B., & Senol, Y. E. (2015). A novel process model for marine accident analysis by using generic fuzzy-ahp algorithm. Journal of Navigation, 68(01), 162–183.

    Google Scholar 

  • Sariöz, K., & Narli, E. (2003). Assessment of manoeuvring performance of large tankers in restricted waterways: A real-time simulation approach. Ocean Engineering, 30(12), 1535–1551.

    Google Scholar 

  • Shahrabi, J., & Pelot, R. (2009). Kernel density analysis of maritime fishing traffic and incidents in Canadian Atlantic Waters. Journal of Applied Sciences, 9(3), 415–426.

    Google Scholar 

  • Siddiqui, A. W., & Verma, M. (n.d.), Assessing risk in the intercontinental transportation of crude oil. Maritime Economics & Logistics pp. 1–20.

  • Soares, C. G., & Teixeira, A. (2001). Risk assessment in maritime transportation. Reliability Engineering & System Safety, 74(3), 299–309.

    Google Scholar 

  • Soner, O., Asan, U., & Celik, M. (2015). Use of hfacs-fcm in fire prevention modelling on board ships. Safety Science, 77, 25–41.

    Google Scholar 

  • Szłapczyński, R., & Śmierzchalski, R. (2009). Supporting navigator’s decisions by visualizing ship collision risk.

  • Szlapczynski, R. (2006). A unified measure of collision risk derived from the concept of a ship domain. Journal of Navigation, 59(3), 477–490.

    Google Scholar 

  • Szlapczynski, R. (2011). Evolutionary sets of safe ship trajectories: A new approach to collision avoidance. Journal of Navigation, 64(1), 169–181.

    Google Scholar 

  • Szwed, P., Dorp, J., Merrick, J., Mazzuchi, T., & Singh, A. (2006). A bayesian paired comparison approach for relative accident probability assessment with covariate information. European Journal of Operational Research, 169(1), 157–177.

    Google Scholar 

  • Talavera, A., Aguasca, R., Galván, B., & Cacereño, A. (2013). Application of dempster-shafer theory for the quantification and propagation of the uncertainty caused by the use of ais data. Reliability Engineering & System Safety, 111, 95–105.

    Google Scholar 

  • Tam, C., & Bucknall, R. (2010). Collision risk assessment for ships. Journal of Marine Science and Technology, 15(3), 257–270.

    Google Scholar 

  • Tan, B., & Otay, E. N. (1999). Modeling and analysis of vessel casualties resulting from tanker traffic through narrow waterways. Naval Research Logistics (NRL), 46(8), 871–892.

    Google Scholar 

  • Thieme, C. A., & Utne, I. B. (2017). A risk model for autonomous marine systems and operation focusing on human-autonomy collaboration. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 231(4), 446–464.

    Google Scholar 

  • Trucco, P., Cagno, E., Ruggeri, F., & Grande, O. (2008). A bayesian belief network modelling of organisational factors in risk analysis: A case study in maritime transportation. Reliability Engineering & System Safety, 93(6), 845–856.

    Google Scholar 

  • Tseng, P.-H., & Pilcher, N. (2017). Maintaining and researching port safety: A case study of the port of kaohsiung. European Transport Research Review, 9(3), 34.

    Google Scholar 

  • Uğurlu, Ö., Erol, S., & Başar, E. (2015). The analysis of life safety and economic loss in marine accidents occurring in the turkish straits. Maritime Policy & Management (ahead-of-print), pp. 1–15.

  • Ulusçu, Ö. S., Özbaş, B., Altıok, T., & Or, İ. (2009). Risk analysis of the vessel traffic in the strait of istanbul. Risk Analysis, 29(10), 1454–1472.

    Google Scholar 

  • Vairo, T., Quagliati, M., Del Giudice, T., Barbucci, A., & Fabiano, B. (2016). From land-to water-use-planning: a consequence based case-study related to cruise ship risk. Safety Science.

  • Van de Wiel, G., & Van Dorp, J. (2009). An oil outflow model for tanker collisions and groundings. Annals of Operations Research, 26(1), 1–26.

    Google Scholar 

  • Van Dorp, J. R., & Merrick, J. R. (2011). On a risk management analysis of oil spill risk using maritime transportation system simulation. Annals of Operations Research, 187(1), 249–277.

    Google Scholar 

  • Van Dorp, J. R., Merrick, J. R., Harrald, J. R., Mazzuchi, T. A., & Grabowski, M. (2001). A risk management procedure for the Washington State Ferries. Risk Analysis, 21(1), 127–142.

    Google Scholar 

  • Vander Hoorn, S., & Knapp, S. (2015). A multi-layered risk exposure assessment approach for the shipping industry. Transportation Research Part A: Policy and Practice, 78, 21–33.

    Google Scholar 

  • Wang, N. (2010). An intelligent spatial collision risk based on the quaternion ship domain. Journal of Navigation, 63(4), 733–749.

    Google Scholar 

  • Wei, X., Wang, Y., Yan, X., Wu, B., & Tian, Y. (2015). A human factors analysis method for marine accident evolution using hfacs-ei model. In ASME 2015 34th international conference on ocean, offshore and arctic engineering (pp. V007T06A049–V007T06A049). American Society of Mechanical Engineers.

  • Weng, J., Meng, Q., & Qu, X. (2012). Vessel collision frequency estimation in the Singapore Strait. Journal of Navigation, 65(02), 207–221.

    Google Scholar 

  • Wu, B., Wang, Y., Zong, L., Soares, C. G., & Yan, X. (2017). Modelling the collision risk in the yangtze river using bayesian networks. In 2017 4th international conference on transportation information and safety (ICTIS) (pp. 503–509). IEEE.

  • Wu, B., Wang, Y., Zhang, J., Savan, E. E., & Yan, X. (2015). Effectiveness of maritime safety control in different navigation zones using a spatial sequential dea model: Yangtze river case. Accident Analysis & Prevention, 81, 232–242.

    Google Scholar 

  • Wu, B., Yan, X., Wang, Y., & Soares, C. G. (2016). Selection of maritime safety control options for nuc ships using a hybrid group decision-making approach. Safety Science, 88, 108–122.

    Google Scholar 

  • Xi, Y., Yang, Z., Fang, Q., Chen, W., & Wang, J. (2017). A new hybrid approach to human error probability quantification-applications in maritime operations. Ocean Engineering, 138, 45–54.

    Google Scholar 

  • Xue, Y., Clelland, D., Lee, B., & Han, D. (2011). Automatic simulation of ship navigation. Ocean Engineering, 38(17), 2290–2305.

    Google Scholar 

  • Yan, X., Zhang, J., Zhang, D., & Soares, C. G. (2014). Challenges and developments in Navigational risk assessment with large uncertainty. In ASME 2014 33rd international conference on ocean, offshore and arctic engineering (pp. V04AT02A037–V04AT02A037). American Society of Mechanical Engineers.

  • Yang, Y.-C. (2011). Risk management of taiwans maritime supply chain security. Safety Science, 49(3), 382–393.

    Google Scholar 

  • Yang, Z., Wang, J., Bonsall, S., & Fang, Q. (2009). Use of fuzzy evidential reasoning in maritime security assessment. Risk Analysis, 29(1), 95–120.

    Google Scholar 

  • Yang, Z., Wang, J., & Li, K. (2013). Maritime safety analysis in retrospect. Maritime Policy & Management, 40(3), 261–277.

    Google Scholar 

  • Yip, T. L. (2008). Port traffic risks-a study of accidents in Hong Kong waters. Transportation Research Part E: Logistics and Transportation Review, 44(5), 921–931.

    Google Scholar 

  • Ylitalo, J. (2010). Modelling marine accident frequency. Masters thesis, Aalto University School of Science and Technology, Espoo, Finland.

  • Youssef, S., Ince, S., Kim, Y., Paik, J., Cheng, F., & Kim, M. (2014). Quantitative risk assessment for collisions involving double hull oil tankers. International Journal of Maritime Engineering, 156, 157–174.

    Google Scholar 

  • Yurtoren, C., Aydogdu, V., Baykara, N., & Mastorakis, N. (2009). Risk analysis of congested areas of istanbul strait via ship handling simulator. In Proceedings of WSEAS international conference on mathematics and computers in science and engineering, number 11. World Scientific and Engineering Academy and Society.

  • Zaman, M., Kobayashi, E., Wakabayashi, N., Khanfir, S., Pitana, T., & Maimun, A. (2014). Fuzzy FMEA model for risk evaluation of ship collisions in the Malacca Strait: Based on AIS data. Journal of Simulation, 8(1), 91–104.

    Google Scholar 

  • Zaman, M. B., Santoso, A., Kobayashi, E., Wakabayashi, D., & Maimun, A. (2015). Formal safety assessment (FSA) for analysis of ship collision using AIS data. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 9(1), 67–72.

    Google Scholar 

  • Zhang, J., Teixeira, Â. P., Guedes Soares, C., Yan, X., & Liu, K. (2016). Maritime transportation risk assessment of tianjin port with bayesian belief networks. Risk Analysis, 36(6), 1171–1187.

    Google Scholar 

  • Zhang, J., Yan, X., Chen, X., Sang, L., & Zhang, D. (2012). A novel approach for assistance with anti-collision decision making based on the international regulations for preventing collisions at sea. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 226(3), 250–259.

    Google Scholar 

  • Zhang, D., Yan, X., Yang, Z., & Wang, J. (2014). An accident data-based approach for congestion risk assessment of inland waterways: A Yangtze River case. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of risk and reliability, 228(2), 176–188.

    Google Scholar 

  • Zhang, J., Yan, X., Zhang, D., Haugen, S., & Yang, X. (2014). Safety management performance assessment for Maritime Safety Administration (MSA) by using generalized belief rule base methodology. Safety Science, 63, 157–167.

    Google Scholar 

  • Zhen, R., Riveiro, M., & Jin, Y. (2017). A novel analytic framework of real-time multi-vessel collision risk assessment for maritime traffic surveillance. Ocean Engineering, 30, 1–10.

    Google Scholar 

Download references

Acknowledgements

This publication was made possible by the NPRP award (NPRP 4-1249-2-492) from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino J. Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, G.J., Cho, J., Bora, S. et al. Models and computational algorithms for maritime risk analysis: a review. Ann Oper Res 271, 765–786 (2018). https://doi.org/10.1007/s10479-018-2768-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2768-4

Keywords

Navigation