Skip to main content
Log in

An approach via generating functions to compute power indices of multiple weighted voting games with incompatible players

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We introduce a new generating function based method to compute the Banzhaf, Deegan–Packel, Public Good (a.k.a. the Holler power index) and Shapley–Shubik power indices in the presence of incompatibility among players. More precisely, given a graph \(G=\left( V,E\right) \) with V the set of players and E the edge set, our extension involves multiple weighted voting games (MWVG’s) and incompatible players, i.e., pairs of players belonging to E are not allowed to cooperate. The route to obtain the aforementioned generating functions comprises the use of a key lemma characterizing the set of minimal winning coalitions of the game with incompatibility due to Alonso-Meijide et al. (Appl Math Comput 252(1):377–387, 2015), a tool from combinatorial analysis, namely, the Omega calculus in partition analysis, and basic tools borrowed from commutative algebra involving the computation of certain quotients of polynomial rings module polynomial ideals. Using partition analysis, we obtain new generating functions to compute the Deegan–Packel and Public Good power indices with incompatibility leading to lower time complexity than previous results of Chessa (TOP 22(2):658–673, 2014) and some results of Alonso-Meijide et al. (Appl Math Comput 219(8):3395–3402, 2012). Using a conjunction of partition analysis and commutative algebra, we extend to MWVG’s the generating function approach to compute the Banzhaf and Shapley–Shubik power indices in the presence of incompatibility. Finally, an example taken from the real-world, i.e., the European Union under the Lisbon Treaty, is used to illustrate the usefulness of the Omega package, a symbolic computational package that implements the Omega calculus in Mathematica, due to Andrews et al. (Eur J Comb 22(7):887–904, 2001) in the context of MWVG’s by computing the PG power index of the associated voting game.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Algaba, E., Bilbao, J. M., Fernández García, J., & López, J. J. (2003). Computing power indices in weighted multiple majority games. Mathematical Social Sciences, 46(1), 63–80.

    Article  Google Scholar 

  • Alonso-Meijide, J. M., & Bowles, C. (2005). Generating functions for coalitional power indices: An application to the IMF. Annals of Operations Research, 137(1), 21–44.

    Article  Google Scholar 

  • Alonso-Meijide, J. M., & Casas-Méndez, B. (2007). The public good index when some voters are incompatible. Homo Oeconomicus, 24(3–4), 449–468.

    Google Scholar 

  • Alonso-Meijide, J. M., Casas-Méndez, B., Holler, M. J., & Lorenzo-Freire, S. (2008). Computing power indices: Multilinear extensions and new characterizations. European Journal of Operational Research, 188(2), 540–554.

    Article  Google Scholar 

  • Alonso-Meijide, J. M., Bilbao, J. M., Casas-Méndez, B., & Fernández, J. R. (2009). Weighted multiple majority games with unions: Generating functions and applications to the European Union. European Journal of Operational Research, 198(2), 530–544.

    Article  Google Scholar 

  • Alonso-Meijide, J. M., Casas-Méndez, B., & Fiestras-Janeiro, M. G. (2015). Computing Banzhaf–Coleman and Shapley–Shubik power indices with incompatible players. Applied Mathematics and Computation, 252(1), 377–387.

    Article  Google Scholar 

  • Alonso-Meijide, J. M., Freixas, J., & Molinero, X. (2012). Computation of several power indices by generating functions. Applied Mathematics and Computation, 219(8), 3395–3402.

    Article  Google Scholar 

  • Andrews, G. E., Paule, P., & Riese, A. (2001). MacMahon’s partition analysis: The omega package. European Journal of Combinatorics, 22(7), 887–904.

    Article  Google Scholar 

  • Banzhaf, J. F, I. I. I. (1965). Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Review, 19, 317–343.

    Google Scholar 

  • Bilbao, J. M., Fernández, J. R., Jiménez Losada, A., & López, J. J. (2000). Generating functions for computing power indices efficiently. TOP, 8(2), 191–213.

    Article  Google Scholar 

  • Bondy, J. A., & Murty, U. S. R. (1982). Graph theory with applications. Amsterdam: Elsevier.

    Google Scholar 

  • Carreras, F. (1991). Restriction of simple games. Mathematical Social Sciences, 21(3), 245–260.

    Article  Google Scholar 

  • Chessa, M. (2014). A generating functions approach for computing the public good index efficiently. TOP, 22(2), 658–673.

    Article  Google Scholar 

  • Coleman, J. S. (1971). Control of collectives and the power of a collectivity to act. In B. Lieberman (Ed.), Social choice (pp. 269–300). New York: Gordon and Breach.

    Google Scholar 

  • Cox, A. D., Little, J., & O’Shea, D. (2007). Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra. Berlin: Springer.

    Book  Google Scholar 

  • Datta, R. S. (2010). Finding all Nash equilibria of a finite game using polynomial algebra. Economic Theory, 42(1), 55–96.

    Article  Google Scholar 

  • Deegan, J, Jr., & Packel, E. W. (1978). A new index of power for simple n-person games. International Journal of Game Theory, 7(2), 113–123.

    Article  Google Scholar 

  • Dubey, P., & Shapley, L. S. (1979). Mathematical properties of the Banzhaf power index. Mathematics of Operations Research, 4(2), 99–131.

    Article  Google Scholar 

  • Egorychev, G. P. (1984). Integral representation and the computation of combinatorial sums. Providence: American Mathematical Society.

    Book  Google Scholar 

  • Einy, E. (1988). The Shapley value on some lattices of monotonic games. Mathematical Social Sciences, 15(1), 1–10.

    Article  Google Scholar 

  • Faaland, B. (1972). On the number of solutions to a diophantine equation. Journal of Combinatorial Theory (A), 13(2), 170–175.

    Article  Google Scholar 

  • Fernández, J. R., Algaba, E., Bilbao, J. M., Jiménez, A., Jiménez, N., & López, J. J. (2002). Generating functions for computing the Myerson value. Annals of Operations Research, 109(1–4), 143–158.

    Article  Google Scholar 

  • Gould, H. W. (1972). Combinatorial Identities. A standardized set of tables listing 500 binomial coefficient summations. Henry W. Gould, Morgantown, W. Va.

  • Holler, M. (1982). Forming coalitions and measuring voting power. Political Studies, 30(2), 262–271.

    Article  Google Scholar 

  • Kirsch, W., & Langner, J. (2010). Power indices and minimal winning coalitions. Social Choice and Welfare, 34(1), 33–46.

    Article  Google Scholar 

  • Lange, F., & Kóczy, L. (2013). Power indices expressed in terms of minimal winning coalitions. Social Choice and Welfare, 41(2), 281–292.

    Article  Google Scholar 

  • Myerson, R. B. (1977). Graphs and cooperation in games. Mathematics of Operations Research, 2(3), 225–229.

    Article  Google Scholar 

  • Neto, A. F. (2019). Generating functions of weighted voting games, MacMahon’s partition analysis, and Clifford algebras. Mathematics of Operations Research, 44(1), 74–101.

    Google Scholar 

  • Neto, A. F., & dos Anjos, P. H. R. (2014). Zeon algebra and combinatorial identities. SIAM Review, 56(2), 353–370.

    Article  Google Scholar 

  • Owen, G. (1972). Multilinear extensions of games. Management Science, 18(5), 64–79.

    Article  Google Scholar 

  • Owen, G. (1975). Multilinear extensions and the Banzhaf value. Naval Research Logistic Quarterly, 22(4), 741–750.

    Article  Google Scholar 

  • Penrose, L. S. (1946). The elementary statistics of majority voting. Journal of the Royal Statistical Society, 109(1), 53–57.

    Article  Google Scholar 

  • Rodríguez-Veiga, J., Novoa-Flores, G. I., & Casas-Méndez, B. (2016). Implementing generating functions to obtain power indices with coalition configuration. Discrete Applied Mathematics, 214(11), 1–15.

    Article  Google Scholar 

  • Schott, R., & Staples, G. S. (2012). Operator calculus on graphs theory and applications in computer science. London: Imperial College Press.

    Book  Google Scholar 

  • Shapley, L. S. (1953). A value for n-person games. In: Contributions to the theory of games II (Vol. 28, pp. 307–317). Princeton: Princeton University Press.

  • Shapley, L. S., & Shubik, M. (1954). A method for evaluating the distributions of power in a committee system. The American Political Science Review, 48(3), 787–792.

    Article  Google Scholar 

  • Wilf, H. S. (1990). Generatingfunctionology. New York: Academic Press.

    Google Scholar 

  • Yakuba, V. (2008). Evaluation of Banzhaf index with restrictions on coalitions formation. Mathematical and Computer Modelling, 48(9–10), 1602–1610.

    Article  Google Scholar 

Download references

Acknowledgements

AFN would like to thank the financial support of CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) under grant 307211/2015-0. CRF would like to thank FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) for a graduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antônio Francisco Neto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francisco Neto, A., Fonseca, C.R. An approach via generating functions to compute power indices of multiple weighted voting games with incompatible players. Ann Oper Res 279, 221–249 (2019). https://doi.org/10.1007/s10479-019-03191-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03191-5

Keywords

Navigation