Skip to main content
Log in

A weight-consistent model for fuzzy supplier selection and order allocation problem

  • S.I.: MCDM 2017
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Decision support for Supplier Selection and Order Allocation (SSOA) is an important application area of multiple criteria decision making (MCDM) problems. In Amid et al. (Int J Prod Econ 131(1):139–145, 2011) proposed and developed a weighted maximin model to ensure the weight-consistent solution for SSOA in an MCDM problem under an uncertain environment. Essentially, this model is based on a weight-consistent constraint and a maximin aggregation operator. This paper reanalyzes the weighted maximin model in terms of the weight-consistent constraint, and then proposes a general weight-consistent model for SSOA in MCDM problems under uncertainty. In this paper, two existing models are reviewed and compared with the proposed model. Three datasets with different ranges of fuzzy demand and full factorial patterns of criteria weights are used to test the performances of the related models. The results showed that the proposed model always generates a weight-consistent Pareto-optimal solution in all cases, while the other existing models do not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aissaoui, N., Haouari, M., & Hassini, E. (2007). Supplier selection and order lot sizing modeling: A review. Computers & Operations Research, 34(12), 3516–3540.

    Article  Google Scholar 

  • Amid, A., Ghodsypour, S., & O’Brien, C. (2009). A weighted additive fuzzy multiobjective model for the supplier selection problem under price breaks in a supply chain. International Journal of Production Economics, 121(2), 323–332.

    Article  Google Scholar 

  • Amid, A., Ghodsypour, S., & O’Brien, C. (2011). A weighted max-min model for fuzzy multi-objective supplier selection in a supply chain. International Journal of Production Economics, 131(1), 139–145.

    Article  Google Scholar 

  • Andrade-Pineda, J. L., Canca, D., & Gonzalez-R, P. L. (2017). On modelling non-linear quantity discounts in a supplier selection problem by mixed linear integer optimization. Annals of Operations Research, 258(2), 301–346.

    Article  Google Scholar 

  • Anupindi, R., & Akella, R. (1993). Diversification under supply uncertainty. Management Science, 39(8), 944–963.

    Article  Google Scholar 

  • Arikan, F. (2011). An augmented max–min model for multiple objective supplier selection. In 9th international congress on logistics and supply chain management, pp. 27–29.

  • Arikan, F. (2013). A fuzzy solution approach for multi objective supplier selection. Expert Systems with Applications, 40(3), 947–952.

    Article  Google Scholar 

  • Bodaghi, G., Jolai, F., & Rabbani, M. (2018). An integrated weighted fuzzy multi-objective model for supplier selection and order scheduling in a supply chain. International Journal of Production Research, 56(10), 3590–3614.

    Article  Google Scholar 

  • Chang, K. H. (2019). A novel supplier selection method that integrates the intuitionistic fuzzy weighted averaging method and a soft set with imprecise data. Annals of Operations Research, 272(1–2), 139–157.

    Article  Google Scholar 

  • Firouzabadi, S. A. K., Henson, B., & Barnes, C. (2008). A multiple stakeholders? Approach to strategic selection decisions. Computers & Industrial Engineering, 54(4), 851–865.

    Article  Google Scholar 

  • Karsak, E. E., & Dursun, M. (2015). An integrated fuzzy mcdm approach for supplier evaluation and selection. Computers & Industrial Engineering, 82, 82–93.

    Article  Google Scholar 

  • Kumar, M., Vrat, P., & Shankar, R. (2004). A fuzzy goal programming approach for vendor selection problem in a supply chain. Computers & Industrial Engineering, 46(1), 69–85.

    Article  Google Scholar 

  • Lai, Y. J., & Hwang, C. L. (1992). Fuzzy mathematical programming (methods and applications). Lecture notes in economics and mathematical systems (vol. 394). Springer, Verlag.

  • Le, C. A., Huynh, V. N., Shimazu, A., & Nakamori, Y. (2007). Combining classifiers for word sense disambiguation based on dempster-shafer theory and owa operators. Data & Knowledge Engineering, 63(2), 381–396.

    Article  Google Scholar 

  • Lin, C. C. (2004). A weighted max-min model for fuzzy goal programming. Fuzzy Sets and Systems, 142(3), 407–420.

    Article  Google Scholar 

  • Liu, W., Wang, S., Zhu, D., Wang, D., & Shen, X. (2018). Order allocation of logistics service supply chain with fairness concern and demand updating: Model analysis and empirical examination. Annals of Operations Research, 268(1–2), 177–213.

    Article  Google Scholar 

  • Moghaddam, K. S. (2015). Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty. Expert Systems with Applications, 42(15–16), 6237–6254.

    Article  Google Scholar 

  • Nazari-Shirkouhi, S., Shakouri, H., Javadi, B., & Keramati, A. (2013). Supplier selection and order allocation problem using a two-phase fuzzy multi-objective linear programming. Applied Mathematical Modelling, 37(22), 9308–9323.

    Article  Google Scholar 

  • Pöyhönen, M., & Hämäläinen, R. P. (2001). On the convergence of multiattribute weighting methods. European Journal of Operational Research, 129(3), 569–585.

    Article  Google Scholar 

  • Ramanathan, R., & Ganesh, L. (1994). Group preference aggregation methods employed in ahp: An evaluation and an intrinsic process for deriving members’ weightages. European Journal of Operational Research, 79(2), 249–265.

    Article  Google Scholar 

  • Ray, P., & Jenamani, M. (2016). Sourcing decision under disruption risk with supply and demand uncertainty: A newsvendor approach. Annals of Operations Research, 237(1–2), 237–262.

    Article  Google Scholar 

  • Ren, J., & Sheridan, T. B. (1994). Optimization with fuzzy linear programming and fuzzy knowledge base. In Proceedings of the 1994 Third IEEE Conference on Fuzzy Systems. IEEE World Congress on Computational Intelligence, pp. 1389–1393.

  • Suprasongsin, S., Yenradee, P., & Huynh, V. N. (2016). Suitable aggregation operator for a realistic supplier selection model based on risk preference of decision maker. In International conference on modeling decisions for artificial intelligence (pp. 68–81). Springer, Cham.

  • Suprasongsin, S., Yenradee, P., Huynh, V. N., & Charoensiriwath, C. (2018). Suitable aggregation models based on risk preferences for supplier selection and order allocation problem. Journal of Advanced Computational Intelligence and Intelligent Informatics, 22(1), 5–16.

    Article  Google Scholar 

  • Wang, T. Y., & Yang, Y. H. (2009). A fuzzy model for supplier selection in quantity discount environments. Expert Systems with Applications, 36(10), 12179–12187.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Article  Google Scholar 

  • Zhang, Jl, & Zhang, My. (2011). Supplier selection and purchase problem with fixed cost and constrained order quantities under stochastic demand. International Journal of Production Economics, 129(1), 1–7.

    Article  Google Scholar 

  • Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45–55.

    Article  Google Scholar 

  • Zimmermann, H. J. (1985). Applications of fuzzy set theory to mathematical programming. Information Sciences, 36(1–2), 29–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirin Suprasongsin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suprasongsin, S., Yenradee, P. & Huynh, VN. A weight-consistent model for fuzzy supplier selection and order allocation problem. Ann Oper Res 293, 587–605 (2020). https://doi.org/10.1007/s10479-019-03354-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03354-4

Keywords

Navigation