Skip to main content
Log in

Risk-aversion information in a supply chain with price and warranty competition

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider a supply chain with one supplier providing basic products to two risk-averse retailers. Each retailer provides a warranty policy for the products to differentiate their products along with pricing strategy. Considering that the risk-aversion level of each retailer is private in most applications, we assume that the retailers’ risk-aversion levels are their respective private information in this paper. Each retailer may choose to disclose her private risk-aversion information to the supplier. We explore the risk-aversion information revelation mechanism of the retailers and propose the supplier’s decisions on whether to accept the revealed information. Our results show that the warranty period added to the product by each retailer is only related to each retailer’s warranty cost efficiency and the consumers’ sensitivity toward warranty. Each retailer is willing to share her risk-aversion level with the supplier only when the real value of her risk-aversion level is lower than the mean value of other participants’ estimation under both the no information leakage scenario and the information leakage scenario. Furthermore, we find that the information leakage has a negative effect on the supplier’s profit if he accepts the shared risk-aversion information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alqahtani, A. Y., & Gupta, S. M. (2017). Warranty as a marketing strategy for remanufactured products. Journal of Cleaner Production,161, 1294–1307.

    Google Scholar 

  • Arcelus, F. J., Kumar, S., & Srinivasan, G. (2007). Manufacturer’s pricing strategies in a single-period framework under price-dependent stochastic demand with asymmetric risk-preference information. Journal of the Operational Research Society,58(11), 1449–1458.

    Google Scholar 

  • Cachon, G. P., & Fisher, M. (2000). Supply chain inventory management and the value of shared information. Management Science,46(8), 1032–1048.

    Google Scholar 

  • Chen, Y., & Deng, M. (2015). Information sharing in a manufacturer-supplier relationship: Suppliers’ incentive and production efficiency. Production and Operations Management Society,24(4), 619–633.

    Google Scholar 

  • Chen, X., Li, L., & Zhou, M. (2012). Manufacturer’s pricing strategy for supply chain with warranty period-dependent demand. Omega: The International Journal of Management Science,40(12), 807–816.

    Google Scholar 

  • Choi, T.-M. (2018). Impacts of retailer’s risk averse behaviors on quick response fashion supply chain systems. Annals of Operations Research,268, 239–257.

    Google Scholar 

  • Choi, T.-M., & Chiu, C.-H. (2016). Supply chain risk analysis with mean-variance models: A technical review. Annals of Operations Research,240, 489–507.

    Google Scholar 

  • Christen, M. (2005). Research note-cost uncertainty is bliss: The effect of competition on the acquisition of cost information for pricing new products. Management Science,51(4), 668–676.

    Google Scholar 

  • Dai, Y., & Chao, X. (2013). Salesforce contract design and inventory planning with asymmetric risk-averse sales agents. Operations Research Letters,41(1), 86–91.

    Google Scholar 

  • Dai, Y., & Chao, X. (2016). Price delegation and salesforce contract design with asymmetric risk aversion coefficient of sales agents. International Journal of Production Economics,172, 31–42.

    Google Scholar 

  • Dan, B., Zhang, S., & Zhou, M. (2017). Strategies for warranty service in a dual-channel supply chain with value-added service competition. International Journal of Production Research. https://doi.org/10.1080/00207543.2017.1377355.

    Article  Google Scholar 

  • Deng, X., Xie, J., & Xiong, H. (2013). Manufacturer-retailer contracting with asymmetric information on retailer’s degree of loss aversion. International Journal of Production Economics,142(2), 372–380.

    Google Scholar 

  • Fu, Y., Chen, Z., & Lan, Y. (2018). The impacts of private risk aversion magnitude and moral hazard in R&D project under uncertain environment. Soft Computing,22(16), 5231–5246.

    Google Scholar 

  • Gal-Or, E., Geylani, T., & Dukes, A. (2008). Information sharing in a channel with partially informed retailers. Marketing Science,27(4), 642–658.

    Google Scholar 

  • Guo, L., & Iyer, G. (2010). Information acquisition and sharing in a vertical relationship. Marketing Science,29(3), 483–506.

    Google Scholar 

  • Ha, A., Tian, Q., & Tang, S. (2017). Information sharing in competing supply chains with production cost reduction. Manufacturing & Service Operations Management,19(2), 246–262.

    Google Scholar 

  • Ha, A., & Tong, S. (2008). Contracting and information sharing under supply chain competition. Management Science,54(4), 701–715.

    Google Scholar 

  • He, C., Marklund, J., & Vossen, T. (2008). Vertical information sharing in a volatile market. Marketing Science,27(3), 513–530.

    Google Scholar 

  • Heese, H. S. (2012). Retail strategies for extended warranty sales and impact on manufacturer base warranties. Decision Sciences,43(2), 341–367.

    Google Scholar 

  • Hsieh, C. C., & Lu, Y. (2010). Manufacturer’s return policy in a two-stage supply chain with two risk-averse retailers and random demand. European Journal of Operational Research,207(1), 514–523.

    Google Scholar 

  • Huang, H., Ke, H., & Wang, L. (2016). Equilibrium analysis of pricing competition and cooperation in supply chain with one common manufacturer and duopoly retailers. International Journal of Production Economics,178, 12–21.

    Google Scholar 

  • Jha, A., Fernandes, K., Xiong, Y., Nie, J., Agarwal, N., & Tiwari, M. (2017). Effects of demand forecast and resource sharing on collaborative new product development in supply chain. International Journal of Production Economics,193, 207–221.

    Google Scholar 

  • Jiang, B., Tian, L., Xu, Y., & Zhang, F. (2016). To share or not to share: Demand forecast sharing in a distribution channel. Marketing Science,35(5), 800–809.

    Google Scholar 

  • Jiang, B., & Zhang, X. (2011). How does a retailer’s service plan affect a manufacturer’s warranty? Management Science,57(4), 727–740.

    Google Scholar 

  • Kurata, H., & Nam, S.-H. (2010). After-sales service competition in a supply chain: Optimization of customer satisfaction level or profit or both? International Journal of Production Economics,127(1), 136–146.

    Google Scholar 

  • Lai, X., Tao, Y., Wang, F., & Zou, Z. (2019). Sustainability investment in maritime supply chain with risk behavior and information sharing. International Journal of Production Economics. https://doi.org/10.1016/j.ijpe.2019.02.021.

    Article  Google Scholar 

  • Li, L. (2002). Information sharing in a supply chain with horizontal competition. Management Science,48(9), 1196–1212.

    Google Scholar 

  • Li, K., Mallik, S., & Chhajed, D. (2012). Design of extended warranties in supply chains under additive demand. Production and Operations Management Society,21(4), 730–746.

    Google Scholar 

  • Li, K., Wang, L., Chhajed, D., & Mallik, S. (2018). The impact of quality perception and consumer valuation change on manufacturer’s optimal warranty, pricing, and market coverage strategies. Decision Sciences,50, 1–29.

    Google Scholar 

  • Li, L., & Zhang, H. (2008). Confidentiality and information sharing in supply chain coordination. Management Science,54(8), 1467–1481.

    Google Scholar 

  • Liu, Z., Anderson, T. D., & Cruz, J. M. (2012). Consumer environmental awareness and competition in two-stage supply chains. European Journal of Operational Research,218, 602–613.

    Google Scholar 

  • Liu, M., Cao, E., & Salifou, C. (2016). Pricing strategies of a dual-channel supply chain with risk aversion. Transportation Research Part E: Logistics and Transportation Review,90, 108–120.

    Google Scholar 

  • Lou, Y., He, Z., Li, Y., & He, S. (2018). Short warranty always be interpreted as low quality: The effect of brand advantages on warranty’s signalization. International Journal of Production Research. https://doi.org/10.1080/00207543.2018.1436791.

    Article  Google Scholar 

  • Mai, D. T., Liu, T., Morris, M. D., & Sun, S. (2017). Quality coordination with extended warranty for store-brand products. European Journal of Operational Research,256(2), 524–532.

    Google Scholar 

  • Markowitz, H. M. (1959). Portfolio selection: Efficient diversification of investment. New York: Wiley.

    Google Scholar 

  • Mukhopadhyay, S. K., Yao, D.-Q., & Yue, X. (2008). Information sharing of value-adding retailer in a mixed channel hi-tech supply chain. Journal of Business Research,9(61), 950–958.

    Google Scholar 

  • Ohmura, S., & Matsuo, H. (2016). The effect of risk aversion on distribution channel contracts: Implications for return policies. International Journal of Production Economics,176(1), 29–40.

    Google Scholar 

  • Qi, Q., Wang, J., & Bai, Q. (2017). Pricing decision of a two-echelon supply chain with one supplier and two retailers under a carbon cap regulation. Journal of Cleaner Production,151, 286–302.

    Google Scholar 

  • Roy, A., Sana, S. S., & Chaudhuri, K. (2018). Optimal pricing of competing retailers under uncertain demand-a two layer supply chain model. Annals of Operations Research,260(1–2), 481–500.

    Google Scholar 

  • Sarmah, S. P., Sinha, S., & Kumar, L. (2015). Price and warranty competition in a duopoly distribution channel: Dynamic stability analysis for boundedly rational agents. IMA Journal of Management Mathematics,26(3), 299–324.

    Google Scholar 

  • Scherer, K. (2006). GM warranties take big leap. Automotive News, Detroit,81, 30.

    Google Scholar 

  • Shang, W., Ha, A., & Tong, S. (2016). Information sharing in a supply chain with a common retailer. Management Science,62(1), 245–263.

    Google Scholar 

  • Shen, B., Choi, T.-M., & Minner, S. (2018). A review on supply chain contracting with information considerations: Information updating and information asymmetry. International Journal of Production Research. https://doi.org/10.1080/00207543.2018.1467062.

    Article  Google Scholar 

  • Taleizadeh, A. A., Hadadpour, S., Cardenas-Barron, L. E., & Shaikh, A. A. (2017a). Warranty and price optimization in a competitive duopoly supply chain with parallel importation. International Journal of Production Economics,185, 76–88.

    Google Scholar 

  • Taleizadeh, A. A., Moshtagh, M. S., & Moon, I. (2017b). Optimal decisions of price, quality, effort level, and return policy in a three-level closed-loop supply chain based on different game theory approaches. European journal of Industrial Engineering,11(4), 486–525.

    Google Scholar 

  • Tsay, A. A. (2002). Risk sensitivity in distribution channel partnerships: Implications for manufacturer return policies. Journal of Retailing,78(2), 147–160.

    Google Scholar 

  • Tsay, A. A., & Agrawal, N. (2000). Channel dynamics under price and service competition. Manufacturing & Service Operations Management,2(4), 372–391.

    Google Scholar 

  • Wang, J., Lau, H.-S., & Lau, A. (2009). When should a manufacturer share truthful manufacturing cost information with a dominant retailer? European Journal of Operational Research,197(1), 266–286.

    Google Scholar 

  • Wei, J., Zhao, J., & Li, Y. (2015). Price and warranty period decisions for complementary products with horizontal firms’ cooperation/noncooperation strategies. Journal of Cleaner Production,105, 86–102.

    Google Scholar 

  • Wu, C. H., Chen, C. W., & Hsieh, C. C. (2012). Competitive pricing decisions in a two echelon supply chain with horizontal and vertical competition. International Journal of Production Economics,135(1), 265–274.

    Google Scholar 

  • Xia, Y., & Gilbert, S. (2007). Strategic interactions between channel structure and demand enhancing services. European Journal of Operational Research,181(1), 252–265.

    Google Scholar 

  • Xiao, T., & Choi, T.-M. (2009). Purchasing choices and channel structure strategies for a two-echelon system with risk-averse players. International Journal of Production Economics,120(1), 54–65.

    Google Scholar 

  • Xiao, T., & Qi, X. (2008). Price competition, cost and demand disruptions and coordination of a supply chain with one manufacturer and two competing retailers. Omega: An International Journal of Management Science,36(5), 741–753.

    Google Scholar 

  • Xu, G., Dan, B., Zhang, X., & Liu, C. (2014). Coordinating a dual-channel supply chain with risk-averse under a two-way revenue sharing contract. International Journal of Production Economics,147, 171–179.

    Google Scholar 

  • Yan, B., Jin, Z., Liu, Y., & Yang, J. (2018a). Decision on risk-averse dual-channel supply chain under demand disruption. Communications in Nonlinear Science and Numerical Simulation,58, 206–224.

    Google Scholar 

  • Yan, Y., Zhao, R., & Chen, H. (2018b). Prisoner’s dilemma on competing retailers’ investment in green supply chain management. Journal of Cleaner Production,184, 65–81.

    Google Scholar 

  • Yang, S. L., & Zhou, Y. W. (2006). Two-echelon supply chain models: Considering duopolistic retailers’ different competitive behaviors. International Journal of Production Economics,103(1), 104–116.

    Google Scholar 

  • Yao, D.-Q., Yue, X., & Liu, J. (2008). Vertical cost information sharing in a supply chain with value-adding retailers. Omega: The International Journal of Management Science,36(5), 838–851.

    Google Scholar 

  • Zhang, H. (2002). Vertical information exchange in a supply chain with duopoly retailers. Production and Operation Management,11(4), 531–546.

    Google Scholar 

  • Zhang, T., Choi, T.-M., & Zhu, X. (2018). Optimal green product’s pricing and level of sustainability in supply chains: effects of information and coordination. Annals of Operations Research. https://doi.org/10.1007/s10479-018-3084-8.

    Article  Google Scholar 

  • Zhang, W., Fu, J., Li, H., & Xu, W. (2012). Coordination of supply chain with a revenue sharing contract under demand disruptions when retailers compete. International Journal of Production Economics,138(1), 68–75.

    Google Scholar 

  • Zhang, Q., Tang, W., Zaccour, G., & Zhang, G. (2019). Should a manufacturer give up pricing power in a vertical information-sharing channel? European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2019.01.054.

    Article  Google Scholar 

  • Zhang, L., Wang, J., & You, J. (2015). Consumer environmental awareness and channel coordination with two substitutable products. European Journal of Operational Research,241(1), 63–73.

    Google Scholar 

  • Zhang, T., Zhu, X., Zhou, C., & Liu, M. (2017). Pricing and advertising the relief goods under various information sharing scenarios. International Transactions in Operational Research,24(4), 867–889.

    Google Scholar 

  • Zhao, D., & Li, Z. (2018). The impact of manufacturer’s encroachment and nonlinear production cost on retailer’s information sharing decisions. Annals of Operations Research,264, 499–539.

    Google Scholar 

  • Zhao, S., & Zhu, Q. (2018). A risk-averse marketing strategy and its effect on coordination activities in a remanufacturing supply chain under market fluctuation. Journal of Cleaner Production,171(10), 1290–1299.

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Key R&D Program of China under Grant No. 2016QY02D0301 and National Natural Science Foundation of China under Grants Nos. 71872123,71802145, 71472132, 71532008 and 71225006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proofs

Appendix A. Proofs

Proof of Proposition 1

For the retailer 1:

$$ \begin{aligned} \mathop {Max}\limits_{{p_{ 1} , t_{ 1} }} E\left[ {U_{{R_{ 1} }} } \right] & = \mathop \int \limits_{{\mu_{ 2} - \varepsilon_{ 2} }}^{{\mu_{ 2} + \varepsilon_{ 2} }} \left( {\left( {p_{ 1} - w - k_{ 1} t_{ 1}^{ 2} } \right)D_{ 1} - \eta_{ 1} \left( {p_{ 1} - w - k_{ 1} t_{ 1}^{ 2} } \right){\upsigma }} \right)f\left( {\eta_{ 2} } \right)d\eta_{ 2} \\ & = \frac{ 1}{{ 2\varepsilon_{ 2} }}\mathop \int \limits_{{\mu_{ 2} - \varepsilon_{ 2} }}^{{\mu_{ 2} + \varepsilon_{ 2} }} \left( {\left( {p_{ 1} - w - k_{ 1} t_{ 1}^{ 2} } \right)D_{ 1} - \eta_{ 1} \left( {p_{ 1} - w - k_{ 1} t_{ 1}^{ 2} } \right){\upsigma }} \right)d\eta_{ 2} .\\ \end{aligned} $$
(A.1)

For the retailer 2:

$$ \begin{aligned} \mathop {Max}\limits_{{p_{ 2} , t_{ 2} }} E\left[ {U_{{R_{ 2} }} } \right] & = \mathop \int \limits_{{\mu_{ 1} - \varepsilon_{ 1} }}^{{\mu_{ 1} + \varepsilon_{ 1} }} \left( {\left( {p_{ 2} - w - k_{ 2} t_{ 2}^{ 2} } \right)D_{ 2} - \eta_{ 2} \left( {p_{ 2} - w - k_{ 2} t_{ 2}^{ 2} } \right){\upsigma }} \right)f\left( {\eta_{ 1} } \right)d\eta_{ 1} \\ & = \frac{ 1}{{ 2\varepsilon_{ 1} }}\mathop \int \limits_{{\mu_{ 1} - \varepsilon_{ 1} }}^{{\mu_{ 1} + \varepsilon_{ 1} }} \left( {\left( {p_{ 2} - w - k_{ 2} t_{ 2}^{ 2} } \right)D_{ 2} - \eta_{ 2} \left( {p_{ 2} - w - k_{ 2} t_{ 2}^{ 2} } \right){\upsigma }} \right)d\eta_{ 1} .\\ \end{aligned} $$
(A.2)

By simultaneously solving Eqs: \( \partial E\left[ {U_{{R_{ 1} }} } \right]/\partial p_{ 1} = 0 , \partial E\left[ {U_{{R_{ 1} }} } \right]/\partial t_{ 1} = 0 \), we have three different equilibrium solutions that satisfy the necessary condition for the optimal solution. However, considering that we must have \( t_{ 1} > 0 \), only the following solution is feasible:

$$ p_{ 1}^{*} = \frac{{\alpha - \eta_{ 1} {\upsigma } - \tau \theta t_{ 2} + \left( { 1+ \theta } \right)w + \theta p_{ 2} }}{{ 2\left( { 1+ \theta } \right)}} + \frac{{ 3\tau^{ 2} }}{{ 8k_{ 1} }} , $$
(A.3)
$$ t_{ 1}^{*} = \frac{\tau }{{ 2k_{ 1} }} . $$
(A.4)

The Hessian matrix of \( E\left[ {U_{{R_{ 1} }} } \right] \) is as follows:

$$ \left[ {\begin{array}{*{20}c} {\frac{{\partial E\left[ {U_{{R_{ 1} }} } \right]}}{{\partial p_{ 1}^{ 2} }}} & {\frac{{\partial E\left[ {U_{{R_{ 1} }} } \right]}}{{\partial p_{ 1} \partial t_{ 1} }}} \\ {\frac{{\partial E\left[ {U_{{R_{ 1} }} } \right]}}{{\partial t_{ 1} \partial p_{ 1} }}} & {\frac{{\partial E\left[ {U_{{R_{ 1} }} } \right]}}{{\partial t_{ 1}^{ 2} }}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - 2- 2\theta } & {\left( { 1 { + }\theta } \right)\left( { 2k_{ 1} t_{ 1} + \tau } \right)} \\ {} & { - 2k_{ 1} (\alpha + \left( { 3t_{ 1} \tau - p_{ 1} } \right)\left( { 1 { + }\theta } \right)} \\ {\left( { 1 { + }\theta } \right)\left( { 2k_{ 1} t_{ 1} + \tau } \right)} & { + \theta p_{ 2} - \eta_{ 1} {\upsigma } - \tau \theta t_{ 2} )} \\ \end{array} } \right] . $$

Substituting \( p_{ 1}^{*} \) and \( t_{ 1}^{*} \) into the Hessian matrix of \( E\left[ {U_{{R_{ 1} }} } \right] \), we obtain the Hessian matrix on the equilibrium point as follows:

$$ H_{0} = \left[ {\begin{array}{*{20}c} { - 2- 2\theta } & { 2\tau \left( { 1 { + }\theta } \right)} \\ { 2\tau \left( { 1 { + }\theta } \right)} & { - \left( {\alpha - w} \right)k_{ 1} - \frac{ 9}{ 4}\tau^{ 2} \left( { 1 { + }\theta } \right) - \left( {p_{ 2} - w} \right)\theta + \eta_{ 1} {\upsigma } + \tau \theta t_{ 2} } \\ \end{array} } \right] . $$

Hence, we have

$$ \left| {H_{0} } \right| = \frac{ 1}{ 2}\left( { 1 { + }\theta } \right)\left( { 4\left( {\alpha - w} \right)k_{ 1} + 4\left( {p_{ 2} - w} \right)\theta + \tau^{ 2} \left( { 1 { + }\theta } \right) - 4\eta_{ 1} {\upsigma } - 4\tau \theta t_{ 2} } \right) . $$

It is obvious that \( - 2- 2\theta < 0 \), and \( - \left( {\alpha - w} \right)k_{ 1} - \frac{ 9}{ 4}\tau^{ 2} \left( { 1 { + }\theta } \right) - \left( {p_{ 2} - w} \right)\theta + \eta_{ 1}\upsigma + \tau \theta t_{ 2} < 0 \) and \( \left| {H_{0} } \right| > 0 \) under the assumption that market base \( \alpha \) is large enough compared to other parameters, which is a very realistic assumption (Taleizadeh et al. 2017b; Yao et al. 2008; Dai and Chao 2016; Ha et al. 2017). Thus the expected utility function \( E\left[ {U_{{R_{ 1} }} } \right] \) of retailer 1 is jointly concave in \( p_{ 1} \) and \( t_{ 1} \) and we get that \( p_{ 1}^{*} \) and \( t_{ 1}^{*} \) are the optimal response function of \( E\left[ {U_{{R_{ 1} }} } \right] \).

Due to the symmetry, similarly, from the first-order conditions (FOC): \( \partial E\left[ {U_{{R_{ 2} }} } \right]/\partial p_{ 2} = 0 , \partial E\left[ {U_{{R_{ 2} }} } \right]/\partial t_{ 2} = 0 , \) the optimal response function for retailer 2 is:

$$ p_{ 2}^{*} = \frac{{\alpha - \eta_{ 2} {\upsigma } - \tau \theta t_{ 1} + \left( { 1+ \theta } \right)w + \theta p_{ 1} }}{{ 2\left( { 1+ \theta } \right)}} + \frac{{ 3\tau^{ 2} }}{{ 8k_{ 2} }} , $$
(A.5)
$$ t_{ 2}^{*} = \frac{\tau }{{ 2k_{ 2} }} . $$
(A.6)

Eq. (A.3) is the best response function of retailer 1. Because retailer 1 has incomplete information of retailer 2, she has no complete knowledge about retailer 2’s retail price \( p_{ 2} \). Thereby retailer 1 finds the expected retail price for retailer 2, i.e.,

$$ p_{ 2} = \mathop \int \limits_{{\mu_{ 2} - \varepsilon_{ 2} }}^{{\mu_{ 2} + \varepsilon_{ 2} }} \left( {\frac{{\alpha - \eta_{ 2} {\upsigma } - \tau \theta t_{ 1} + \left( { 1+ \theta } \right)w + \theta p_{ 1} }}{{ 2\left( { 1+ \theta } \right)}} + \frac{{ 3\tau^{ 2} }}{{ 8k_{ 2} }}} \right)f\left( {\eta_{ 2} } \right)d\eta_{ 2} . $$
(A.7)

Similarly, retailer 2 finds the expected retail price for retailer 1.

$$ p_{ 1} = \mathop \int \limits_{{\mu_{ 1} - \varepsilon_{ 1} }}^{{\mu_{ 1} + \varepsilon_{ 1} }} \left( {\frac{{\alpha - \eta_{ 1} {\upsigma } - \tau \theta t_{ 2} + \left( { 1+ \theta } \right)w + \theta p_{ 2} }}{{ 2\left( { 1+ \theta } \right)}} + \frac{{ 3\tau^{ 2} }}{{ 8k_{ 1} }}} \right)f\left( {\eta_{ 1} } \right)d\eta_{ 1} . $$
(A.8)

Substituting (A.7) into (A.3), (A.8) into (A.5), and solving (A.3), (A.5) simultaneously, we obtain the equilibriums for the retailers:

$$ \begin{aligned} p_{i}^{*} & = \frac{{\left( { 3\theta + 2} \right)\alpha + \left( { 3\theta^{ 2} + 5\theta + 2} \right)w - \left( { 2\theta + 2} \right)\sigma \eta_{i} - \theta \sigma \mu_{ 3- i} }}{{ 3\theta^{ 2} + 8\theta + 4}} \\ & \quad + \frac{{ 2\left( { 2\theta^{ 2} + 6\theta + 3} \right)\tau^{ 2} k_{ 3- i} - \left( {\theta^{ 2} + \theta } \right)\tau^{ 2} k_{i} }}{{ 4k_{i} k_{ 3- i} \left( { 3\theta^{ 2} + 8\theta + 4} \right)}} ,\\ \end{aligned} $$
(A.9)
$$ t_{i}^{*} = \frac{\tau }{{ 2k_{i} }} , \quad i = 1 , 2. $$
(A.10)

Proof of Proposition 2

Substituting Eq. (A.9) and Eq. (A.10) into Eq. (11), Eq. (12) and Eq. (13) respectively, we can obtain the supplier’s expected profit functions under the three different information sharing cases as follows:

$$ \begin{aligned} E\left( {\pi_{\text{M}}^{\text{BI}} } \right) & = \frac{{ 2\left( { 1+ \theta } \right)w\alpha }}{ 2+ \theta } + \frac{{ 2w\sigma \left( { 1+ \theta } \right)\left( {\eta_{ 1} + \eta_{ 2} } \right) + w\sigma \theta \left( {\mu_{ 1} + \mu_{ 2} } \right)}}{{\left( { 2+ \theta } \right)\left( { 3\theta + 2} \right)}} \\ & \quad + \frac{{\left( { 1+ \theta } \right)\left( {k_{ 1} \tau^{ 2} + k_{ 2} \tau^{ 2} - 8k_{ 1} k_{ 2} w} \right)w}}{{ 4\left( { 2+ \theta } \right)k_{ 1} k_{ 2} }} ; \\ \end{aligned} $$
(A.11)
$$ \begin{aligned} E\left( {\pi_{\text{M}}^{\text{OI}} } \right) & = \frac{{ 2\left( { 1+ \theta } \right)w\alpha }}{ 2+ \theta } + \frac{{ 2w\sigma \left( { 1+ \theta } \right)\eta_{i} + w\sigma \left( {\mu_{i} \theta + 2\mu_{ 3- i} + 3\theta \mu_{ 3- i} } \right)}}{{\left( { 2+ \theta } \right)\left( { 3\theta + 2} \right)}} \\ & \quad + \frac{{\left( { 1+ \theta } \right)\left( { - 8k_{i} k_{ 3- i} w + k_{i} \tau^{ 2} + k_{ 3- i} \tau^{ 2} } \right)w}}{{ 4k_{i} k_{ 3- i} \left( { 2+ \theta } \right)}} ;\\ \end{aligned} $$
(A.12)
$$ E\left( {\pi_{\text{M}}^{\text{NI}} } \right) = \frac{{ 2\left( { 1+ \theta } \right)w\alpha }}{ 2+ \theta } + \frac{{w\sigma \left( {\mu_{ 1} + \mu_{ 2} } \right)}}{ 2+ \theta } + \frac{{\left( { 1+ \theta } \right)\left( {k_{ 1} \tau^{ 2} + k_{ 2} \tau^{ 2} - 8k_{ 1} k_{ 2} w} \right)w}}{{ 4\left( { 2+ \theta } \right)k_{ 1} k_{ 2} }} ; $$
(A.13)

where the superscript \( BI , OI \) and \( NI \) represent the case 1, 2 and 3, respectively. Since \( \frac{{d^{ 2} E\left( {\pi_{\text{M}}^{\text{BI}} } \right)}}{{dw^{ 2} }} = \frac{{d^{ 2} E\left( {\pi_{\text{M}}^{\text{OI}} } \right)}}{{dw^{ 2} }} = \frac{{d^{ 2} E\left( {\pi_{\text{M}}^{\text{NI}} } \right)}}{{dw^{ 2} }} = - \frac{{ 4\left( { 1+ \theta } \right)}}{ 2+ \theta } < 0 \), \( E\left( {\pi_{\text{M}}^{\text{BI}} } \right) \), \( E\left( {\pi_{\text{M}}^{\text{OI}} } \right) \) and \( E\left( {\pi_{\text{M}}^{\text{NI}} } \right) \) are all concave in \( w \). Let \( \frac{{dE\left( {\pi_{\text{M}}^{\text{BI}} } \right)}}{dw} = 0 \), \( \frac{{dE\left( {\pi_{\text{M}}^{\text{OI}} } \right)}}{dw} = 0 \), \( \frac{{dE\left( {\pi_{\text{M}}^{\text{NI}} } \right)}}{dw} = 0 \), then we obtain the optimal wholesale prices of the supplier under the three different information sharing cases as shown in Proposition 2.

Then we discuss the positiveness of the equilibrium results obtained in this paper. From Proposition 1 and 2, we can easily see that the optimal warranty periods of the retailers \( t_{i}^{*} > 0 \) and supplier’s wholesale prices \( w_{j}^{*} > 0 \) in the three cases under the no information leakage scenario, where \( i = 1 , 2 \) and \( j = {\text{BI, OI, NI}} . \) In case 1, substituting \( w_{BI}^{*} \) into \( p_{i}^{*} \) in Proposition 1, we get the retailers’ optimal retail price in the case of both retailers sharing information as follows:

$$ \begin{aligned} p_{i}^{*} & = \frac{{\left( {\theta + 3} \right)\alpha }}{{ 2\left( {\theta + 2} \right)}} + \frac{{ 2\sigma \eta_{ 3- i} \left( {\theta + 1} \right) + \mu_{i} \sigma \theta - 3\sigma \mu_{ 3- i} \theta - 3 \left( { 2\theta + 2} \right)\sigma \eta_{i} }}{{ 4\left( {\theta + 2} \right)\left( { 3\theta + 2} \right)}} \\ & \quad + \frac{{\left( {\theta + 2- \theta^{ 2} } \right)\tau^{ 2} k_{i} + \left( { 1 9\theta^{ 2} + 5 3\theta + 2 6} \right)\tau^{ 2} k_{ 3- i} }}{{ 1 6k_{i} k_{ 3- i} \left( {\theta + 2} \right)\left( { 3\theta + 2} \right)}} .\\ \end{aligned} $$
(A.14)

Then, substituting \( t_{i}^{*} \), \( w_{BI}^{*} \) and Eq. (A.14) into Eq. (A.11) and Eq. (10), we can obtain the supplier’s optimal expected profit \( \pi_{\text{M}}^{ *} \left( 2\right) \) and retailer \( i \)’s utility \( U_{{R_{i} }} \left( { 1_{s} , 2_{s} } \right) \), \( i = 1 , 2. \) We can easily see that Eq. (A.14), \( \pi_{\text{M}}^{ *} \left( 2\right) \) and \( U_{{R_{i} }} \left( { 1_{s} , 2_{s} } \right) \) are positive when the market base \( \alpha \) is large enough compared to other parameters, which is a realistic assumption (Taleizadeh et al. 2017b; Yao et al. 2008; Dai and Chao 2016; Ha et al. 2017). In case 2, substituting \( {\text{w}}_{\text{OI}}^{ *} \) into \( {\text{p}}_{\text{i}}^{ *} \) in Proposition 1, we get the retailers’ optimal retail price in the case of only retailer \( {\text{i}} \) sharing information as follows:

$$ \begin{aligned} p_{i}^{*} & = \frac{{\left( {\theta + 3} \right)\alpha }}{{ 2\left( {\theta + 2} \right)}} + \frac{{\mu_{i} \sigma \theta + \sigma \mu_{ 3- i} \left( { 2- \theta } \right) - 3 \left( { 2\theta + 2} \right)\sigma \eta_{i} }}{{ 4\left( {\theta + 2} \right)\left( { 3\theta + 2} \right)}} \\ & + \frac{{\left( {\theta + 2- \theta^{ 2} } \right)\tau^{ 2} k_{i} + \left( { 1 9\theta^{ 2} + 5 3\theta + 2 6} \right)\tau^{ 2} k_{ 3- i} }}{{ 1 6k_{i} k_{ 3- i} \left( {\theta + 2} \right)\left( { 3\theta + 2} \right)}} . \\ \end{aligned} $$
(A.15)
$$ \begin{aligned} p_{ 3- i}^{*} & = \frac{{\left( {\theta + 3} \right)\alpha }}{{ 2\left( {\theta + 2} \right)}} + \frac{{ 2\sigma \eta_{i} \left( {\theta + 1} \right) + \sigma \mu_{ 3- i} \left( { 3\theta + 2} \right) - 4 \left( { 2\theta + 2} \right)\sigma \eta_{ 3- i} - 3\mu_{i} \sigma \theta }}{{ 4\left( {\theta + 2} \right)\left( { 3\theta + 2} \right)}} \\ & \quad + \frac{{\left( {\theta + 2- \theta^{ 2} } \right)\tau^{ 2} k_{ 3- i} + \left( { 1 9\theta^{ 2} + 5 3\theta + 2 6} \right)\tau^{ 2} k_{i} }}{{ 1 6k_{i} k_{ 3- i} \left( {\theta + 2} \right)\left( { 3\theta + 2} \right)}} . \\ \end{aligned} $$
(A.16)

Substituting \( t_{i}^{*} \), \( w_{OI}^{*} \), Eqs. (A.15) and (A.16) into Eq. (A.12) and Eq. (10), we can obtain the supplier’s optimal expected profit \( \pi_{{{\text{M}}i}}^{ *} \left( 1\right) \) and retailer \( i \)’s utility \( U_{{R_{i} }} \left( { 1_{n} , 2_{s} } \right) \) or \( U_{{R_{i} }} \left( { 1_{s} , 2_{n} } \right) \), \( i = 1 , 2. \) Similarly, we can easily see that Eqs. (A.15) and (A.16), \( \pi_{{{\text{M}}i}}^{ *} \left( 1\right) \) and \( U_{{R_{i} }} \left( { 1_{n} , 2_{s} } \right) \) or \( U_{{R_{i} }} \left( { 1_{s} , 2_{n} } \right) \) are positive under the assumption that the market base \( \alpha \) is large enough compared to other parameters. In case 3, substituting \( w_{NI}^{*} \) into \( p_{i}^{*} \) in Proposition 1, we get the retailers’ optimal retail price in the case of no retailers sharing information as follows:

$$ \begin{aligned} p_{i}^{*} & = \frac{{\left( {\theta + 3} \right)\alpha }}{{ 2\left( {\theta + 2} \right)}} + \frac{{\left( { 3\theta + 2} \right)\mu_{i} \sigma + \sigma \mu_{ 3- i} \left( { 2- \theta } \right) - 4\left( { 2\theta + 2} \right)\sigma \eta_{i} }}{{ 4\left( {\theta + 2} \right)\left( { 3\theta + 2} \right)}} \\ & \quad + \frac{{\left( {\theta + 2- \theta^{ 2} } \right)\tau^{ 2} k_{i} + \left( { 1 9\theta^{ 2} + 5 3\theta + 2 6} \right)\tau^{ 2} k_{ 3- i} }}{{ 1 6k_{i} k_{ 3- i} \left( {\theta + 2} \right)\left( { 3\theta + 2} \right)}} .\\ \end{aligned} $$
(A.17)

Substituting \( t_{i}^{*} \), \( w_{NI}^{*} \) and Eq. (A.17) into Eq. (A.13) and Eq. (10), we can obtain the supplier’s optimal expected profit \( \pi_{\text{M}}^{ *} \left( 0\right) \) and retailer \( i \)’s utility \( U_{{R_{i} }} \left( { 1_{n} , 2_{n} } \right) \), \( i = 1 , 2. \) We can easily see that Eq. (A.17), \( \pi_{\text{M}}^{ *} \left( 0\right) \) and \( U_{{R_{i} }} \left( { 1_{n} , 2_{n} } \right) \) are positive when the market base \( \alpha \) is large enough compared to other parameters.

Proof of Proposition 3

$$ \pi_{\text{M}}^{ *} \left( 2\right) - \pi_{\text{M}}^{ *} \left( 0\right) = \frac{{\left( { 1+ \theta } \right)\left( {\eta_{ 1} + \eta_{ 2} - \mu_{ 1} - \mu_{ 2} } \right)^{ 2} {\upsigma }^{ 2} }}{{ 2\left( { 2+ \theta } \right)\left( { 3\theta + 2} \right)^{ 2} }} \ge 0 ; $$
$$ \pi_{\text{M}}^{ *} \left( 2\right) - \pi_{{{\text{M}}i}}^{ *} \left( 1\right) = \frac{{\left( { 1+ \theta } \right)\left( {\eta_{ 3- i} - \mu_{ 3- i} } \right)^{ 2} {\upsigma }^{ 2} }}{{ 2\left( { 2+ \theta } \right)\left( { 3\theta + 2} \right)^{ 2} }} \ge 0 ; $$
$$ \pi_{{{\text{M}}i}}^{ *} \left( 1\right) - \pi_{\text{M}}^{ *} \left( 0\right) = \frac{{\left( { 1+ \theta } \right)\left( {\eta_{i} - \mu_{i} } \right)\left( {\eta_{i} + 2\eta_{ 3- i} - \mu_{i} - 2\mu_{ 3- i} } \right){\upsigma }^{ 2} }}{{ 2\left( { 2+ \theta } \right)\left( { 3\theta + 2} \right)^{ 2} }} . $$

When \( \eta_{i} > \mu_{i} \), we can obtain \( \pi_{{{\text{M}}i}}^{ *} \left( 1\right) > \pi_{\text{M}}^{ *} \left( 0\right) \) if \( \mu_{ 3- i} < \frac{{\eta_{i} - \mu_{i} }}{ 2} , \) or if \( \mu_{ 3- i} > \frac{{\eta_{i} - \mu_{i} }}{ 2} \) and \( \eta_{ 3- i} > \frac{{\left( { 2\mu_{ 3- i} + \mu_{i} - \eta_{i} } \right)}}{ 2} \); when \( \eta_{i} < \mu_{i} \), we can obtain \( \pi_{{{\text{M}}i}}^{ *} \left( 1\right) > \pi_{\text{M}}^{ *} \left( 0\right) \) if \( \eta_{ 3- i} < \frac{{\left( { 2\mu_{ 3- i} + \mu_{i} - \eta_{i} } \right)}}{ 2} \).

Proof of Proposition 4

$$ U_{{R_{ 1} }} \left( { 1_{n} , 2_{n} } \right) - U_{{R_{ 1} }} \left( { 1_{s} , 2_{n} } \right) = {\upsigma }\left( {\eta_{ 1} - \mu_{ 1} } \right)\left[ { \frac{{ 2\left( { 1 { + }\theta } \right)\left( { 3\theta { + 2}} \right){{\upsigma \upalpha }} - {\text{A}}}}{{ 4\left( { 2 { + }\theta } \right)^{ 2} \left( { 3\theta { + 2}} \right)^{ 2} }}{ + }\frac{{\left( { 1 { + }\theta } \right)\left( { 4\theta^{ 2} { + 13}\theta { + 6}} \right)k_{ 2} \tau^{ 2} - \left( { 1 { + }\theta } \right)\left( { 4\theta^{ 2} { + 7}\theta { + 2}} \right)k_{ 1} \tau^{ 2} }}{{ 1 6k_{ 1} k_{ 2} \left( { 2 { + }\theta } \right)^{ 2} \left( { 3\theta { + 2}} \right)^{ 2} }}} \right] , $$

where \( A = \left( { 6\theta^{ 2} { + 17}\theta + 9} \right)\upsigma\eta_{ 1} + 4\theta \left( { 1+ \theta } \right)\upsigma\eta_{ 2} + \left( { 2\theta^{ 2} { + 2}\theta + 1} \right)\upsigma\mu_{ 1} + \left( { 3\theta + 2} \right)\upsigma\mu_{ 2} \).

We assume that the market base \( \alpha \) is large enough, which is a very realistic assumption (Taleizadeh et al. 2017b; Yao et al. 2008; Dai and Chao 2016; Ha et al. 2017). If \( \eta_{ 1} > \mu_{ 1} \), then \( U_{{R_{ 1} }} \left( { 1_{n} , 2_{n} } \right) > U_{{R_{ 1} }} \left( { 1_{s} , 2_{n} } \right) \). Similarly for \( U_{{R_{ 1} }} \left( { 1_{n} , 2_{s} } \right) > U_{{R_{ 1} }} \left( { 1_{s} , 2_{s} } \right) \), \( \eta_{ 1} > \mu_{ 1} \) must hold. For retailer 2, because of the symmetry, we obtain the condition is \( \eta_{ 2} > \mu_{ 2} \).

Proof of Proposition 5

From Proposition 4, we have \( U_{{R_{ 1} }} \left( { 1_{n} , 2_{n} } \right) < U_{{R_{ 1} }} \left( { 1_{s} , 2_{n} } \right) \) and \( U_{{R_{ 1} }} \left( { 1_{n} , 2_{s} } \right) < U_{{R_{ 1} }} \left( { 1_{s} , 2_{s} } \right) \) if \( \eta_{ 1} < \mu_{ 1} \). For retailer 2, the condition is \( \eta_{ 2} < \mu_{ 2} \). Moreover, from Proposition 3, we get that the supplier is always better off by acquiring the risk-aversion information from two retailers. Therefore, this Proposition is proved.

Proof of Proposition 6

Similar to the Proof of Proposition 5.

Proof of Proposition 7

Without loss of generality, suppose retailer 1 shares her risk-aversion information with the supplier while retailer 2 does not. The following inequality should be satisfied:

$$ \pi_{\text{M}}^{ *} \left( 2\right) - \pi_{\text{M1}}^{ *} \left( 1\right) > U_{{R_{ 2} }} \left( { 1_{s} , 2_{n} } \right) - U_{{R_{ 2} }} \left( { 1_{s} , 2_{s} } \right) . $$

By some algebra,

$$ \begin{aligned} & \left[ {\pi_{\text{M}}^{ *} \left( 2\right) - \pi_{\text{M1}}^{ *} \left( 1\right)} \right] - \left[ {U_{{R_{ 2} }} \left( { 1_{s} , 2_{n} } \right) - U_{{R_{ 2} }} \left( { 1_{s} , 2_{s} } \right)} \right] \\ & = {\upsigma }\left( {\mu_{ 2} - \eta_{ 2} } \right)\left[ { \frac{{ 2\left( { 1 { + }\theta } \right)\left( { 3\theta { + 2}} \right){{\upalpha }} - B}}{{ 4\left( { 2 { + }\theta } \right)^{ 2} \left( { 3\theta { + 2}} \right)^{ 2} }}{ + }\frac{{\left( { 1 { + }\theta } \right)\left( { 4\theta^{ 2} { + 13}\theta { + 6}} \right)k_{ 1} \tau^{ 2} - \left( { 1 { + }\theta } \right)\left( { 4\theta^{ 2} { + 7}\theta { + 2}} \right)k_{ 2} \tau^{ 2} }}{{ 1 6k_{ 1} k_{ 2} \left( { 2 { + }\theta } \right)^{ 2} \left( { 3\theta { + 2}} \right)^{ 2} }}} \right] ,\\ \end{aligned} $$

where \( B = 2\left( { 1+ \theta } \right)\left( { 1+ 2\theta } \right){\upsigma }\eta_{ 1} + \left( { 8\theta^{ 2} { + 23}\theta + 1 3} \right){\upsigma }\eta_{ 2} + \theta {\upsigma }\mu_{ 1} - \left( { 4\theta + 3} \right){\upsigma }\mu_{ 2} \).

Since we assume that the market base \( \alpha \) is large enough, then for\( \left[ {\pi_{\text{M}}^{ *} \left( 2\right) - \pi_{\text{M1}}^{ *} \left( 1\right)} \right] - \left[ {U_{{R_{ 2} }} \left( { 1_{s} , 2_{n} } \right) - U_{{R_{ 2} }} \left( { 1_{s} , 2_{s} } \right)} \right] > 0 \), we have the condition that \( \eta_{ 2} < \mu_{ 2} \). This condition is contradictory to our assumption that retailer 2 has no incentive to share her risk-aversion information (\( \eta_{ 2} > \mu_{ 2} \)). Thus it is proved that\( \pi_{\text{M}}^{ *} \left( 2\right) - \pi_{\text{M1}}^{ *} \left( 1\right) < U_{{R_{ 2} }} \left( { 1_{s} , 2_{n} } \right) - U_{{R_{ 2} }} \left( { 1_{s} , 2_{s} } \right) \). Because of the symmetry, this Proposition is proved.

Proof of Proposition 8

In this case, the retailers have complete knowledge with respect to each other’s risk-aversion level because of the information leakage. Retailer \( i \)’s utility function in this case is:

$$ U_{{R_{i} }} = \left( {p_{i} - w - k_{i} t_{i}^{ 2} } \right)D_{i} - \eta_{i} \left( {p_{i} - w - k_{i} t_{i}^{ 2} } \right){\upsigma } . $$
(A.18)

By simultaneously solving Eqs: \( \partial U_{{R_{i} }} /\partial p_{i} = 0 , \partial U_{{R_{i} }} /\partial t_{i} = 0 \), we have the following response functions:

$$ p_{i}^{*} = \frac{{\alpha - \eta_{i} {\upsigma } - \tau \theta t_{ 3- i} + \left( { 1+ \theta } \right)w + \theta p_{ 3- i} }}{{ 2\left( { 1+ \theta } \right)}} + \frac{{ 3\tau^{ 2} }}{{ 8k_{i} }} , $$
(A.19)
$$ t_{i}^{*} = \frac{\tau }{{ 2k_{i} }} . $$
(A.20)

The Hessian matrix of \( U_{{R_{i} }} \) is as follows:

$$ \left[ {\begin{array}{*{20}c} {\frac{{\partial U_{{R_{i} }} }}{{\partial p_{i}^{ 2} }}} & {\frac{{\partial U_{{R_{i} }} }}{{\partial p_{i} \partial t_{i} }}} \\ {\frac{{\partial U_{{R_{i} }} }}{{\partial t_{i} \partial p_{i} }}} & {\frac{{\partial U_{{R_{i} }} }}{{\partial t_{i}^{ 2} }}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - 2- 2\theta } & {\left( { 1 { + }\theta } \right)\left( { 2k_{i} t_{i} + \tau } \right)} \\ {} & { - 2k_{i} (\alpha + \left( { 3t_{i} \tau - p_{i} } \right)\left( { 1 { + }\theta } \right)} \\ {\left( { 1 { + }\theta } \right)\left( { 2k_{i} t_{i} + \tau } \right)} & { + \theta p_{ 3- i} - \eta_{i} {\upsigma } - \tau \theta t_{ 3- i} )} \\ \end{array} } \right] . $$

Substituting \( p_{i}^{*} \) and \( t_{i}^{*} \) into the Hessian matrix of \( U_{{R_{i} }} \), we obtain the Hessian Matrix on the equilibrium point as follows:

$$ H_{ 1} = \left[ {\begin{array}{*{20}c} { - 2- 2\theta } & { 2\tau \left( { 1 { + }\theta } \right)} \\ { 2\tau \left( { 1 { + }\theta } \right)} & { - \left( {\alpha - w} \right)k_{i} - \frac{ 9}{ 4}\tau^{ 2} \left( { 1 { + }\theta } \right) - \left( {p_{ 3- i} - w} \right)\theta + \eta_{i} {\upsigma } + \tau \theta t_{ 3- i} } \\ \end{array} } \right] . $$

Hence, we have

$$ \left| {H_{ 1} } \right| = \frac{ 1}{ 2}\left( { 1 { + }\theta } \right)\left( { 4\left( {\alpha - w} \right)k_{i} + 4\left( {p_{ 3- i} - w} \right)\theta + \tau^{ 2} \left( { 1 { + }\theta } \right) - 4\eta_{i} {\upsigma } - 4\tau \theta t_{ 3- i} } \right) . $$

Similarly, it shows that \( - 2- 2\theta < 0 \), and \( - \left( {\alpha - w} \right)k_{i} - \frac{ 9}{ 4}\tau^{ 2} \left( { 1 { + }\theta } \right) - \left( {p_{ 3- i} - w} \right)\theta + \eta_{i} {\upsigma } + \tau \theta t_{ 3- i} < 0 \) and \( \left| {H_{ 1} } \right| > 0 \) when the market base \( \alpha \) is large enough compared to other parameters. So we get that \( p_{i}^{*} \) and \( t_{i}^{*} \) are the optimal response functions of \( U_{{R_{i} }} \). Then solving \( p_{ 1}^{*} \) and \( p_{ 2}^{*} \) in Eq. (A. 19), we obtain the equilibriums for the retailers:

$$ \begin{aligned} p_{i}^{*} & = \frac{{\left( { 3\theta + 2} \right)\alpha + \left( { 3\theta + 2} \right)\left( {\theta + 1} \right)w - \left( { 2\theta + 2} \right)\sigma \eta_{i} - \theta \sigma \eta_{ 3- i} }}{{ 3\theta^{ 2} + 8\theta + 4}} \\ & \quad + \frac{{ 2\left( { 2\theta^{ 2} + 6\theta + 3} \right)\tau^{ 2} k_{ 3- i} - \left( {\theta^{ 2} + \theta } \right)\tau^{ 2} k_{i} }}{{ 4k_{i} k_{ 3- i} \left( { 3\theta^{ 2} + 8\theta + 4} \right)}} , \\ \end{aligned} $$
(A.21)
$$ t_{i}^{*} = \frac{\tau }{{ 2k_{i} }} , \quad i = 1 , 2. $$
(A.22)

Substituting Eq. (A.21) and Eq. (A.22) into Eq. (11), we can obtain the supplier’s expected profit function in this cases as follows:

$$ E\left( {\pi_{\text{M}} } \right) = \frac{{ 2\left( { 1+ \theta } \right)w\alpha + w\sigma \left( {\eta_{ 1} + \eta_{ 2} } \right) - 2w^{ 2} \left( { 1+ \theta } \right)}}{ 2+ \theta } + \frac{{\tau^{ 2} w\left( { 1+ \theta } \right)\left( {k_{ 1} + k_{ 2} } \right)}}{{ 4\left( { 2+ \theta } \right)k_{ 1} k_{ 2} }} $$
(A.23)

Since \( \frac{{d^{ 2} E\left( {\pi_{\text{M}} } \right)}}{{dw^{ 2} }} = - \frac{{ 4\left( { 1+ \theta } \right)}}{ 2+ \theta } < 0 \), \( E\left( {\pi_{\text{M}} } \right) \) is concave in \( w \). Let \( \frac{{dE\left( {\pi_{\text{M}} } \right)}}{dw} = 0 \), then we obtain the optimal wholesale prices \( w_{BI}^{IL*} \) of the supplier under this case as shown in Proposition 8. Then substituting \( w_{BI}^{IL*} \) into Eq. (A. 21), we can obtain the retailer \( i \)’s optimal retail price and warranty period as shown in Proposition 8. Given the optimal equilibrium results above, then we can obtain the supplier’s expected profit and retailers’ utility. Similarly, it can show that the equilibrium results are positive under the assumption that the market base \( \alpha \) is large enough.

Proof of Proposition 9

Similar to the Proofs of Proposition 1 and Proposition 2.

Proof of Proposition 10

Similar to the Proof of Proposition 3

Proof of Proposition 11

Similar to the Proof of Proposition 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, K., He, Z., Lou, Y. et al. Risk-aversion information in a supply chain with price and warranty competition. Ann Oper Res 287, 61–107 (2020). https://doi.org/10.1007/s10479-019-03386-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03386-w

Keywords

Navigation