Skip to main content
Log in

Capacity reallocation via sinking high-quality resource in a hierarchical healthcare system

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper studies the capacity reallocation in a hierarchical medical ecosystem via sinking high-quality resource from high-level hospitals to low-level hospitals. To facilitate the capacity sinking, we develop two payment schemes: fee-for-capacity (FFC) and performance payment (PP). Under the FFC scheme, the low-level hospital always pays a unit capacity sinking price to the high-level hospital, whereas under the PP scheme, the reallocation price is paid contingent on the increased patient visits at the low-level hospital due to capacity sinking. By considering the profit- and utility-maximizing behaviors of strategic parties, we build a four-stage Stackelberg sequential game model within a queuing framework to derive the equilibrium results in terms of the low-level hospital’s capacity, the high-level hospital’s capacity sinking rate, and the funder’s capacity sinking price. In the absence of funder’s coordination, it is shown that any increase in sinking price always reduces the capacity sinking rate. In the presence of funder’s coordination, we find that: (1) the payment schemes under study will not alter the efficiency or coordination of the overall healthcare systems; (2) for the setting with a high perceived value by patients, under each payment scheme, the capacity sinking program is efficient to increase the high-level hospital’s profit and the social welfare as well, but it lowers the patient visit rate at the low-level hospital; (3) for the setting with a higher difference between the patients’ perceived values at the two levels of hospitals, the capacity sinking program is efficient to increase the patient visit rate at the low-level hospital and the social welfare as well, but it sacrifices the high-level hospital’s profit. Finally, numerical studies provide more useful managerial insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Public service such as healthcare, whose service level and quality largely depend on service consumers’ (patients’) perceived value, is described by Rajan et al. (2019).

  2. In some countries, such as China, most patients prefer to visit high-level hospitals even for simple care, because they always perceive that a high-level hospital’s healthcare service is better than that of a low-level hospital; cf. Rajan et al. (2019).

  3. This assumption is fairly common because the expansion of the higher-quality healthcare service capacity is rather costly (Guo et al. 2019; Qian et al 2017; Best et al. 2015) and it has also been banned in some countries (e.g., China).

  4. Note that it is common to define the weighted sum of all service providers’ benefits as the objective function (performance) of the overall healthcare system (cf. Hua et al. 2016).

References

  • Adida, E., Mamani, H., & Nassiri, S. (2017). Bundled payment vs. fee-for-service: Impact of payment scheme on performance. Management Science, 63(5), 1606–1624.

    Google Scholar 

  • Afanasyev, M., & Mendelson, H. (2010). Service provider competition: Delay cost structure, segmentation, and cost advantage. Manufacturing and Service Operations Management, 12(2), 213–235.

    Google Scholar 

  • Afèche, P., Araghi, M., & Baron, O. (2017). Customer acquisition, retention, and service access quality: Optimal advertising, capacity Level, and capacity allocation. Manufacturing and Service Operations Management, 19(4), 674–691.

    Google Scholar 

  • Andritsos, D. A., & Aflaki, S. (2015). Competition and the operational performance of hospitals: The role of hospital objectives. Production and Operations Management, 24(11), 1812–1832.

    Google Scholar 

  • Andritsos, D. A., & Tang, C. S. (2014). Introducing competition in healthcare services: The role of private care and increased patient mobility. European Journal of Operational Research, 234(3), 898–909.

    Google Scholar 

  • Andritsos, D. A., & Tang, C. S. (2018). Incentive programs for reducing readmissions when patient care is co-produced. Production and Operations Management, 27(6), 999–1020.

    Google Scholar 

  • Barrera, J., & Garcia, A. (2015). Auction design for the efficient allocation of service capacity under congestion. Operations Research, 63(1), 151–165.

    Google Scholar 

  • Best, T. J., Sand, B., Eisenstein, D. D., Meltzer, D. O., Best, T. J., et al. (2015). Managing hospital inpatient bed capacity through partitioning care into focused wings. Manufacturing and Service Operations Management, 17(2), 157–176.

    Google Scholar 

  • CCTV.com. (2019). Can an extra brand make such a big difference [focus interview]? [WWW Document]. http://m.news.cctv.com/2019/04/19/ARTI0uWsFUqABcTkmrVbpSzu190419.shtml.

  • Chang, A., Lu, H., & Shi, J. (2019). Stock-out risk control of the production/inventory system with compound Poisson demands. Omega, The International Journal of Management Science, 83, 181–198.

    Google Scholar 

  • Chen, W., Zhang, Z. G., & Hua, Z. (2015). Analysis of two-tier public service systems under a government subsidy policy. Computer and Industrial Engineering, 90, 146–157.

    Google Scholar 

  • Çil, E. B., & Lariviere, M. A. (2013). Saving seats for strategic customers. Operations Management, 61(6), 1321–1332.

    Google Scholar 

  • CN-healthcare. (2018a). The committee discussed the regional imbalance of medical resources and proposed to adjust educational resources to guide the sinking of talents [WWW Document]. https://www.cn-healthcare.com/article/20180305/content-500945.html?appfrom=jkj.

  • CN-healthcare. (2018b). Self-interest is an inescapable obstacle but the new play of the hospital alliance construction is worth learning [WWW Document]. https://www.cn-healthcare.com/article/20180929/content-508468.html?appfrom=jkj.

  • Dai, T., & Tayur, S. (2019). Healthcare operations management: A snapshot of emerging research. Manufacturing and Service Operations Management. https://doi.org/10.1287/msom.2019.0778.

    Article  Google Scholar 

  • Deo, S., Iravani, S., Jiang, T., Smilowitz, K., & Samuelson, S. (2013). Improving health outcomes through better capacity allocation in a community-based chronic care model. Operations Research, 61(6), 1277–1294.

    Google Scholar 

  • Gao, L., Shi, J., Gorman, M., & Luo, T. (2020). Business analytics for intermodal capacity management. Manufacturing and Service Operations Management (MSOM), 22(2), 310–329.

    Google Scholar 

  • General office of the state council of PRC. (2015). Guidance of the general office of the state council on promoting the construction of the hierarchical healthcare system [WWW Document]. http://www.gov.cn/zhengce/content/2015-09/11/content_10158.htm.

  • Guo, P., Lindsey, R., & Zhang, Z. G. (2014). On the Downs–Thomson paradox in a self-financing two-tier queuing system. Manufacturing and Service Operations Management, 16(2), 315–322.

    Google Scholar 

  • Guo, P., Tang, C. S., Wang, Y., & Zhao, M. (2019). The impact of reimbursement policy on social welfare, revisit rate, and waiting time in a public healthcare system: Fee-for-service versus bundled payment. Manufacturing and Service Operations Managemen, 21(1), 154–170.

    Google Scholar 

  • Hassin, R. (2016). Rational queueing. London: Chapman and Hall.

    Google Scholar 

  • Hassin, R., & Haviv, M. (2003). To queue or not to queue: Equilibrium behavior in queueing systems. Boston, MA: Kluwer.

    Google Scholar 

  • Hua, Z., Chen, W., & Zhang, Z. G. (2016). Competition and coordination in two-tier public service systems under government fiscal policy. Production and Operations Management, 25(8), 1430–1448.

    Google Scholar 

  • Katehakis, M. N., Melamed, B., & Shi, J. (2015). Optimal replenishment rate for inventory systems with compound Poisson demands and lost sales: A direct treatment of time-average cost. Annals of Operations Research. https://doi.org/10.1007/s10479-015-1998-y.

    Article  Google Scholar 

  • Katehakis, M. N., Melamed, B., & Shi, J. (2016). Cash-flow based dynamic inventory management. Production and Operations Management Society (POMS), 25(9), 1558–1575.

    Google Scholar 

  • Kostami, V., Kostamis, D., & Ziya, S. (2017). Pricing and capacity allocation for shared services. Manufacturing and Service Operations Management, 19(2), 230–245.

    Google Scholar 

  • Li, N., Kong, N., Li, Q., & Jiang, Z. (2017). Evaluation of reverse referral partnership in a tiered hospital system—A queuing-based approach. International Journal of Production Research, 55(19), 5647–5663.

    Google Scholar 

  • Liu, X., Cai, X., Zhao, R., & Lan, Y. (2015). Mutual referral policy for coordinating health care systems of different scales. International Journal of Production Research, 53(24), 7411–7433.

    Google Scholar 

  • Mccoy, J. H., & Lee, H. L. (2014). Using fairness models to improve equity in health delivery fleet management. Production and Operations Management, 23(6), 965–977.

    Google Scholar 

  • Moliner, M. A. (2006). Hospital perceived value. Health Care Management Review, 31(4), 328–336.

    Google Scholar 

  • Naor, P. (1969). The regulation of queue size by levying tolls. Econometric, 37(1), 15–24.

    Google Scholar 

  • Natarajan, K., & Swaminathan, J. (2018). Handbook of healthcare analytics: Theoretical minimum for conducting 21st century research on healthcare operations. Hoboken, NJ: Wiley.

    Google Scholar 

  • Oh, J., & Su, X. (2018). Reservation policies in queues: Advance deposits, spot prices, and capacity allocation. Production and Operations Management, 27(4), 680–695.

    Google Scholar 

  • People’s Daily. (2019). The consultation rate in counties reaches 85% nationwide, and “serious diseases will not leave the county” is gradually realized [WWW Document]. http://www.gov.cn/xinwen/2019-04/13/content_5382316.htm.

  • Phoenix Satellite Television. (2018). The Chinese program of the hierarchical healthcare systems [WWW Document]. http://www.sohu.com/a/228121442_612533.

  • Qi, L., Shi, J., & Xu, X. (2015). Supplier competition and its impact on firm’s sourcing strategy. Omega, The International Journal of Management Science, 55, 91–110.

    Google Scholar 

  • Qian, Q., Guo, P., & Lindsey, R. (2017). Comparison of subsidy schemes for reducing waiting times in healthcare systems. Production and Operations Management, 26(11), 2033–2049.

    Google Scholar 

  • Qian, Q., & Zhuang, W. (2017). Tax/subsidy and capacity decisions in a two-tier health system with welfare redistributive objective. European Journal of Operational Research, 260(1), 140–151.

    Google Scholar 

  • Rajan, B., Tezcan, T., & Seidmann, A. (2019). Service systems with heterogeneous customers: Investigating the effect of telemedicine on chronic care. Management Science, 65(3), 1236–1267.

    Google Scholar 

  • Savva, N., Tezcan, T., & Özlem, Y. (2019). Can yardstick competition reduce waiting times? Management Science, 65(7), 3196–3215.

    Google Scholar 

  • Shi, J. (2017). Optimal production/inventory system subject to stock-out risk. Annals of Operations Research. https://doi.org/10.1007/s10479-016-2339-5.

    Article  Google Scholar 

  • Shi, J., Katehakis, M. N., & Melamed, B. (2013). Martingale methods for pricing inventory penalties under continuous replenishment and compound renewal demands. Annals of Operations Research, 208(1), 593–612.

    Google Scholar 

  • Shi, J., & Zhao, Y. (2014). The value of component commonality under non-holdback allocation rules. Operations Research Letters, 42(6–7), 409–413.

    Google Scholar 

  • Shi, J., Zhao, Y., Kiwanuka, K., & Chang, A. (2019). Optimal selling policies for farmer cooperatives. Production and Operations Management, 28(12), 3060–3080.

    Google Scholar 

  • Song, J., & Wen, J. (2015). A non-cooperative game with incomplete information to improve patient hospital choice. International Journal of Production Research, 75(43), 7360–7375.

    Google Scholar 

  • Wang, J., Cui, S., & Wang, Z. (2019). Equilibrium strategies in M/M/1 priority queues with balking. Production and Operations Management, 28(1), 43–62.

    Google Scholar 

  • Wang, J., Li, Z., Shi, J. J., & Chang, A. J. (2020). Hospital referral and capacity strategies in the two-tier healthcare systems. Omega, 102229.

  • Webb, E., & Mills, A. (2019). Incentive-compatible prehospital triage in emergency medical services. Production and Operations Management. https://doi.org/10.1111/poms.13036.

  • Xiang, Y. S., & Zhuang, J. (2016). A medical resource allocation model for serving emergency victims with deteriorating health conditions. Annals of Operations Research, 236(1), 177–196.

    Google Scholar 

  • Xinhuanet. (2018). Qinghai medical consortium construction to promote the quality of medical resources sinking [WWW Document]. http://www.gov.cn/xinwen/2018-10/07/content_5328328.htm.

  • Xinhuanet. (2019). Ma Xiaowei: Achieve the hierarchical healthcare by doing “four separation” [WWW Document]. http://www.xinhuanet.com/politics/2019lh/2019-03/08/c_1210076635.htm.

  • Yang, L., Guo, P., & Wang, Y. (2018). Service pricing with loss-averse customers. Operations Research, 66(3), 761–777.

    Google Scholar 

  • Zeng, Y., Zhang, L., Cai, X., & Li, J. (2018). Cost sharing for capacity transfer in cooperating queueing systems. Production and Operations Management, 27(4), 644–662.

    Google Scholar 

  • Zhou, W., Chao, X., & Gong, X. (2014). Optimal uniform pricing strategy of a service firm when facing two classes of customers. Production and Operations Management, 23(4), 676–688.

    Google Scholar 

  • Zhou, W., Wan, Q., & Zhang, R. Q. (2017). Choosing among hospitals in the subsidized health insurance system of China: A sequential game approach. European Journal of Operational Research, 257(2), 568–585.

    Google Scholar 

  • Zorc, S., Chick, S. E., & Hasija, S. (2017). Outcomes-based reimbursement policies for chronic care pathways. Working Paper.

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (71672019, 71421001). The fourth author is grateful for the support of Hurlburt professorship and the support from the Leir Research Institute (LRI) at NJIT.

Author information

Authors and Affiliations

Authors

Contributions

Zhong-Ping Li: Investigation; Methodology; Visualization; Roles/Writing—original draft. Jian-Jun Wang: Conceptualization; Project administration; Resources; Supervision; Writing—review and editing. Ai-Chih (Jasmine) Chang: Writing, deriving results, developing takeaway, review and editing. Jim (Junmin) Shi (Corresponding author): Formal analysis; Methodology; Supervision; Validation; Writing—review and editing.

Corresponding author

Correspondence to Jim Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 1

According to \( \left. {U_{1M} (x_{k} ) = U_{2} (x_{k} ,\;\mu_{k2} )} \right|_{{\lambda_{2} = \lambda^{\prime}_{2} }} \) and λk1M + φλ = min {Λkλ} − λ′, if [α − β(xk)]v − p ≠ 0, then we have

$$ \begin{aligned} \frac{{[\alpha - \beta (x_{k} )]v - p}}{d} & = \frac{1}{{(1 - x_{k} )\mu _{1} - (\Lambda _{k} \wedge \lambda - \lambda _{2} )}} - \frac{1}{{\mu _{2} + x\mu _{1} - \lambda _{2} }} \\ & \Leftrightarrow \frac{{[\alpha - \beta (x_{k} )]v - p}}{d}( = 1/\Delta ) \\ & = \frac{{[\mu _{{k2}} + (2x_{k} - 1)\mu _{1} + \Lambda _{k} ] - 2\lambda_{2} ^{\prime} }}{{\left\{ {[(1 - x_{k} )\mu _{1} - \Lambda _{k} \wedge \lambda ] + \lambda _{2}^{\prime} } \right\}[(\mu _{{k2}} + x_{k} \mu _{1} ) - \lambda _{2}^{\prime} ]}} \\ & \Leftrightarrow \left\{ {[(1 - x_{k} )\mu _{1} - \Lambda _{k} \wedge \lambda ] + \lambda _{2}^{\prime} } \right\}[(\mu _{{k2}} + x_{k} \mu _{1} ) - \lambda_{2} ^{\prime} ] \\ & = \;\Delta \left\{ {[\mu _{{k2}} + (2x_{k} - 1)\mu _{1} + \Lambda _{k} \wedge \lambda ] - 2\lambda _{2}^{\prime} } \right\} \\ & \Leftrightarrow \left\{ \begin{gathered} - \lambda _{2}^{\prime 2} + \left\{ {[\mu _{{k2}} + (2x_{k} - 1)\mu _{1} + \Lambda _{k} \wedge \lambda ] + 2\Delta } \right\}\lambda _{2}^{\prime} + \hfill \\ \left\{ {[(1 - x_{k} )\mu _{1} - \Lambda _{k} \wedge \lambda ](\mu _{{k2}} + x_{k} \mu _{1} ) - \Delta [\mu _{{k2}} + (2x_{k} - 1)\mu _{1} + \Lambda _{k} \wedge \lambda ]} \right\} \hfill \\ \end{gathered} \right\} = 0. \\ \end{aligned} $$

In light of Assumption 2, we have [α − β(xk)]v − p > 0, thus, \( \lambda^{\prime}_{2} = \tilde{\lambda }_{k 2} (x_{k} ,\;\mu_{k2} ) \), where

$$ \begin{aligned} \tilde{\lambda }_{k 2} (x_{k} ,\;\mu_{k2} ) & = \Lambda_{k} \wedge \lambda + (x_{k} - 1)\mu_{1} + \left( {\frac{{\mu_{k2} + \mu_{1} - \Lambda_{k} \wedge \lambda }}{2} + \Delta } \right) \\ & \quad - \sqrt {\left\{ {\frac{{(\mu_{k2} + \mu_{1} ) - \Lambda_{k} \wedge \lambda }}{2}} \right\}^{2} + \Delta^{2} }. \\ \end{aligned} $$

Next, setting

$$ \begin{aligned} H_{1} (x_{k} ,\;\mu_{k2} ) & = \frac{{[\alpha - \beta (x_{k} )]v - p}}{d} - \left[ {\frac{1}{{(1 - x_{k} )\mu_{1} - \lambda }} - \frac{1}{{\mu_{k2} + x\mu_{1} }}} \right]; \\ H_{2} (x_{k} ,\;\mu_{k2} ) & = \frac{{[\alpha - \beta (x_{k} )]v - p}}{d} - \left[ {\frac{1}{{(1 - x_{k} )\mu_{1} - \Lambda_{k} }} - \frac{1}{{\mu_{k2} + x\mu_{1} }}} \right]. \\ H_{3} (x_{k} ,\;\mu_{k2} ) & = \frac{{[\alpha - \beta (x_{k} )]v - p}}{d} - \left[ {\frac{1}{{(1 - x_{k} )\mu_{1} - \varphi \lambda }} - \frac{1}{{\mu_{k2} + x\mu_{1} - (1 - \varphi )\lambda }}} \right]; \\ H_{4} (x_{k} ,\;\mu_{k2} ) & = \frac{{[\alpha - \beta (x_{k} )]v - p}}{d} - \left[ {\frac{1}{{(1 - x_{k} )\mu_{1} - \varphi \lambda }} - \frac{1}{{\mu_{k2} + x\mu_{1} - (\Lambda_{k} - \varphi \lambda )}}} \right]; \\ H_{5} (x_{k} ,\;\mu_{k2} ) & = \Lambda_{k} - \lambda ,\;\Lambda_{k} = \mu_{1} + \mu_{k2} - \frac{d}{\alpha v - p} - \frac{d}{{\beta (x_{k} ) \cdot v}}; \\ \end{aligned} $$
  • If \( (x_{k} ,\;\mu_{k2} ) \in \mathop { \arg }\limits_{{x_{k} \in [0,\;1],\mu_{k2} }} \left\{ {H_{1} (x_{k} ,\;\mu_{k2} ) \ge 0\;\text{and} \;H_{5} (x_{k} ,\;\mu_{k2} ) \ge 0} \right\} \), then we have λk1M(xkμk2) = (1 − φ)λλk2(xkμk2) = 0;

  • if \( (x_{k} ,\;\mu_{k2} ) \in \mathop { \arg }\limits_{{x_{k} \in [0,\;1],\;\mu_{k2} }} \left\{ {H_{2} (x_{k} ,\;\mu_{k2} ) \ge 0\;\text{and} \;H_{5} (x_{k} ,\;\mu_{k2} ) \le 0} \right\} \), then we have λk2M(xkμk2) = Λk(xkμk2) − φλλk2(xkμk2) = 0;

  • if \( (x_{k} ,\;\mu_{k2} ) \in \mathop { \arg }\limits_{{x_{k} \in [0,\;1],\;\mu_{k2} }} \left\{ {H_{1} (x_{k} ,\;\mu_{k2} ) \le 0,\;H_{3} (x_{k} ,\;\mu_{k2} ) \ge 0,\;\text{and} \;H_{5} (x_{k} ,\;\mu_{k2} ) \ge 0} \right\} \), then we have \( \lambda_{k1M} (x_{k} ,\;\mu_{k2} ) = (1 - \varphi )\lambda - \tilde{\lambda }_{k2}^{1} (x_{k} ,\;\mu_{k2} ),\lambda_{k2} (x_{k} ,\;\mu_{k2} ) = \tilde{\lambda }_{k2}^{1} (x_{k} ,\;\mu_{k2} ) \);

  • if \( (x_{k} ,\;\mu_{k2} ) \in \mathop { \arg }\limits_{{x_{k} \in [0,\;1],\;\mu_{k2} }} \left\{ {H_{2} (x_{k} ,\;\mu_{k2} ) \le 0,\;H_{4} (x_{k} ,\;\mu_{k2} ) \ge 0,\;\text{and} \;H_{5} (x_{k} ,\;\mu_{k2} ) \le 0} \right\} \), then we have \( \lambda_{k2M} (x_{k} ,\;\mu_{k2} ) = \Lambda_{k} (x_{k} ,\;\mu_{k2} ) - \varphi \lambda - \tilde{\lambda }_{k2}^{2} (x_{k} ,\;\mu_{k2} ),\lambda_{k2} (x_{k} ,\;\mu_{k2} ) = \tilde{\lambda }_{k2}^{2} (x_{k} ,\;\mu_{k2} ) \);

  • if \( (x_{k} ,\;\mu_{k2} ) \in \mathop { \arg }\limits_{{x_{k} \in [0,\;1],\;\mu_{k2} }} \left\{ {H_{4} (x_{k} ,\;\mu_{k2} ) \le 0\;\text{and} \;H_{5} (x_{k} ,\;\mu_{k2} ) \le 0} \right\} \), then we have λk1M(xkμk2) = 0, λk2(xkμk2) = Λk(xkμk2) − φλ;

  • if \( (x_{k} ,\;\mu_{k2} ) \in \mathop { \arg }\limits_{{x_{k} \in [0,\;1],\;\mu_{k2} }} \left\{ {H_{3} (x_{k} ,\;\mu_{k2} ) \le 0\;\text{and} \;H_{5} (x_{k} ,\;\mu_{k2} ) \ge 0} \right\} \), then we have λk1M(xkμk2) = 0, λk2(xkμk2) = (1 − φ)λ,

where

$$ \begin{aligned} \tilde{\lambda }_{k2}^{1} (x_{k} ,\;\mu_{k2} ) & = \lambda + (x_{k} - 1)\mu_{1} + \left( {\frac{{\mu_{k2} + \mu_{1} - \lambda }}{2} + \Delta } \right) - \sqrt {\left\{ {\frac{{(\mu_{k2} + \mu_{1} ) - \lambda }}{2}} \right\}^{2} + \Delta^{2} } ; \\ \tilde{\lambda }_{k2}^{2} (x_{k} ,\;\mu_{k2} ) & = \Lambda_{k} + (x_{k} - 1)\mu_{1} + \left( {\frac{{\mu_{k2} + \mu_{1} - \Lambda_{k} }}{2} + \Delta } \right) - \sqrt {\left\{ {\frac{{(\mu_{k2} + \mu_{1} ) - \Lambda_{k} }}{2}} \right\}^{2} + \Delta^{2} }. \\ \end{aligned} $$

Finally, this concludes the proof. □

1.2 Proof of Proposition 2

Under the fee-for-capacity scheme, if \( \lambda_{f2} = \tilde{\lambda }_{f2} \), taking the first-and second-order derivative of \( \tilde{\lambda }_{f2} \) with respect to μf2, then we have

$$ \frac{{\partial \tilde{\lambda }_{f2} }}{{\partial \mu_{f2} }} = \frac{1}{2}\left\{ { 1- {1 \mathord{\left/ {\vphantom {1 {\sqrt {1 + \left\{ {\frac{2d}{{\left\{ {[\alpha - \beta (x_{f} )]v - p} \right\}[\mu_{f2} + (2x_{f} - 1)\mu_{1} + \Lambda_{f} ]}}} \right\}^{2} } }}} \right. \kern-0pt} {\sqrt {1 + \left\{ {\frac{2d}{{\left\{ {[\alpha - \beta (x_{f} )]v - p} \right\}[\mu_{f2} + (2x_{f} - 1)\mu_{1} + \Lambda_{f} ]}}} \right\}^{2} } }}} \right\} \in \left( {0,\;\frac{1}{2}} \right), $$
$$ \frac{{\partial^{2} \tilde{\lambda }_{f2} }}{{\partial \mu_{f2}^{2} }} = - \frac{{\frac{{2d^{2} }}{{\left\{ {[\alpha - \beta (x_{f} )]v - p} \right\}^{2} [\mu_{2} + (2x_{f} - 1)\mu_{1} + \Lambda_{f} ]^{3} }}}}{{\left\{ {1 + \left\{ {\frac{2d}{{\left\{ {[\alpha - \beta (x_{f} )]v - p} \right\}[\mu_{f2} + (2x_{f} - 1)\mu_{1} + \Lambda_{f} ]}}} \right\}^{2} } \right\}^{{\frac{3}{2}}} }} < 0. $$

Hence, we further have \( \arg\left\{ {\mathop {\hbox{max} }\nolimits_{{\mu_{f2} }}\left\{ \lambda_{f2} (\mu_{f2} )\right\}} \right\} = \hbox{max} \left\{ {\mathop {\arg}\nolimits_{{\mu_{f2} }} \left\{ {\Pi_{f2} (\mu_{f2} ) \ge 0} \right\}} \right\} \).

Since the expected profit of Hospital 2 is Πf2(μf2) = B − c2μf2 − pfxfμ1, we obtain \( \frac{{\partial \Pi_{f2} (\mu_{f2} )}}{{\partial \mu_{f2} }} = - c_{2} \le 0 \). Denoting μf2*(xf) as Hospital 2’s optimal capacity level for any given xf, then we show that \( \mu_{f2}^{ * } (x_{f} ) = \arg\mathop {\hbox{max} }\nolimits_{{\mu_{2} }} \{\lambda_{f2} (\mu_{f2} )\} = \mathop {\arg}\nolimits_{{\mu_{2} }} \left\{ {\Pi_{f2} (\mu_{f2} ) = 0} \right\} = {{(B - p_{f} x_{f} \mu_{1} )} \mathord{\left/ {\vphantom {{(B - p_{f} x_{f} \mu_{1} )} {c_{2} }}} \right. \kern-0pt} {c_{2} }} \).

Consequently, this completes the proof. □

1.3 Proof of Lemma 1

Since \( \Lambda_{f1} (x_{f} ) = (1 - x_{f} )\mu_{1} - \frac{d}{\alpha v - p} \ge \varphi \lambda \), one has \( x_{f} \le \bar{x}^{0} = 1 - {{\varphi \lambda } \mathord{\left/ {\vphantom {{\varphi \lambda } {\mu_{1} }}} \right. \kern-0pt} {\mu_{1} }} - {d \mathord{\left/ {\vphantom {d {[(\alpha v - p)\mu_{1} ]}}} \right. \kern-0pt} {[(\alpha v - p)\mu_{1} ]}} \).

Taking the first-and second-order derivatives of Λf(xf) and Λf2(xf) with respect to \( x_{f} \), we obtain

$$ \begin{aligned} \frac{{\;\partial \Lambda_{f2} (x_{f} )}}{{\partial x_{f} }} & = - \left( {\frac{{p_{f} }}{{c_{2} }} - 1} \right)\mu_{1} + \frac{d(\alpha - 1)}{{ [ 1+ x_{f} (\alpha - 1)]^{2} \cdot v}}; \\ \frac{{\;\partial^{2} \Lambda_{f2} (x_{f} )}}{{\partial x_{f}^{2} }} & = - \frac{{2d(\alpha - 1)^{2} }}{{ [ 1+ x_{f} (\alpha - 1)]^{3} \cdot v}}; \\ \end{aligned} $$
$$ \begin{aligned} \frac{{\;\partial \Lambda_{f} (x_{f} )}}{{\partial x_{f} }} & = - \frac{{p_{f} \mu_{1} }}{{c_{2} }} + \frac{d(\alpha - 1)}{{ [ 1+ x_{f} (\alpha - 1)]^{2} \cdot v}}; \\ \frac{{\;\partial^{2} \Lambda_{f} (x_{f} )}}{{\partial x_{f}^{2} }} & = - \frac{{2d(\alpha - 1)^{2} }}{{ [ 1+ x_{f} (\alpha - 1)]^{3} \cdot v}}. \\ \end{aligned} $$

Therefore,

$$ \frac{{\;\partial \Lambda_{f2} (x_{f} )}}{{\partial x_{f} }} \ge 0 \Leftrightarrow x_{f} \le \bar{x}_{f}^{01} ;\,\,\,\,\frac{{\;\partial \Lambda_{f} (x_{f} )}}{{\partial x_{f} }} \ge 0 \Leftrightarrow x_{f} \le \bar{x}_{f}^{02} , $$

where \( \bar{x}_{f}^{01} = \sqrt {\frac{d}{{v[\mu_{1} (p_{f} /c_{2} - 1)(\alpha - 1)]}}} - \frac{1}{(\alpha - 1)} \), and \( \bar{x}_{f}^{02} = \sqrt {\frac{d}{{v[\mu_{1} (p_{f} /c_{2} )(\alpha - 1)]}}} - \frac{1}{(\alpha - 1)}. \)

When xf = 0, we have \( \left. {\Lambda_{f2} (x_{f} )} \right|_{{x_{f} = 0}} = \frac{B}{{c_{2} }} - \frac{d}{v} \triangleq \Lambda_{f2}^{0} \).

Hence, \( \Lambda_{f2} (x_{f} ) - \Lambda_{f2}^{0} = \frac{d}{v} - \left[ {\left( {\frac{{p_{f} }}{{c_{2} }} - 1} \right)\mu_{1} x_{f} + \frac{d}{{\beta (x_{f} ) \cdot v}}} \right] \). Next, setting Λf2(xf) − Λ 0f2  = 0, we have

$$ \begin{aligned} & \frac{d}{v} = \left[ {\left( {\frac{{p_{f} }}{{c_{2} }} - 1} \right)\mu_{1} x_{f} + \frac{d}{{\beta (x_{f} ) \cdot v}}} \right] \\ & \quad \Leftrightarrow x_{f} (\alpha - 1) = \frac{{(p_{f} - c_{2} )\mu_{1} v}}{{dc_{2} }}x_{f} \left[ {1 + x_{f} (\alpha - 1)} \right] \\ & \quad \Leftrightarrow \bar{x}_{f}^{ 1} = 0,\;\text{or} \;\bar{x}_{f}^{ 2} = \frac{{dc_{2} }}{{(p_{f} - c_{2} )\mu_{1} v}} - \frac{1}{(\alpha - 1)}. \\ \end{aligned} $$

When xf = 0, we have \( \left. {\Lambda_{f} (x_{f} )} \right|_{{x_{f} = 0}} = \mu_{1} + \frac{B}{{c_{2} }} - \frac{d}{\alpha v - p} - \frac{d}{v} \triangleq \Lambda_{f}^{0} \).

Hence, \( \Lambda_{f} (x_{f} ) - \Lambda_{f}^{0} = \frac{d}{v} - \left[ {\frac{{p_{f} x_{f} \mu_{1} }}{{c_{2} }} + \frac{d}{{\beta (x_{f} ) \cdot v}}} \right] \). Next, setting Λf(xf) − Λ 0f  = 0, we have

$$ \begin{aligned} \frac{d}{v} & = \left[ {\frac{{p_{f} x_{f} \mu_{1} }}{{c_{2} }} + \frac{d}{{\beta (x_{f} ) \cdot v}}} \right] \Leftrightarrow [\beta (x_{f} ) - 1] \\ & = \frac{{p_{f} \mu_{1} v}}{{dc_{2} }}x_{f} \beta (x_{f} ) \\ & \Leftrightarrow x_{f} (\alpha - 1) = \frac{{p_{f} \mu_{1} v}}{{dc_{2} }}x_{f} \left[ {1 + x_{f} (\alpha - 1)} \right] \\ & \Leftrightarrow \bar{x}_{f}^{ 3} = 0,\;\text{or} \;\bar{x}_{f}^{ 4} = \frac{{dc_{2} }}{{p_{f} \mu_{1} v}} - \frac{1}{(\alpha - 1)}. \\ \end{aligned} $$
  1. (i)

    If \( \bar{x}_{f}^{ 4} = \frac{{dc_{2} }}{{p_{f} \mu_{1} v}} - \frac{1}{(\alpha - 1)} \le 0\Leftrightarrow p_{f} \ge \frac{{dc_{2} (\alpha - 1)}}{{\mu_{1} v}} \), we have Λf2(xf) ≤ Λ 0f2 and Λf(xf) ≤ Λ 0f for \( x_{f} \in [ 0 ,\;\bar{x}_{f}^{ 0} ] \).

  2. (ii)

    If \( \bar{x}_{f}^{ 4} = \frac{{dc_{2} }}{{p_{f} \mu_{1} v}} - \frac{1}{(\alpha - 1)} \ge 0\Leftrightarrow p_{f} \le \frac{{dc_{2} (\alpha - 1)}}{{\mu_{1} v}} \),

    • (a) when \( \bar{x}_{f}^{2} = \frac{{dc_{2} }}{{(p_{f} - c_{2} )\mu_{1} v}} - \frac{1}{(\alpha - 1)} \le \bar{x}^{0} \) \( \Leftrightarrow p_{f} \ge \frac{{dc_{2} }}{{\mu_{1} v\left\{ {1 - {{\varphi \lambda } \mathord{\left/ {\vphantom {{\varphi \lambda } {\mu_{1} }}} \right. \kern-0pt} {\mu_{1} }} - d / [(\alpha v - p)\mu_{1} ]+ 1/(\alpha - 1)} \right\}}} + c_{2} \),

      • if \( x_{f} \in [ 0 ,\;\bar{x}_{f}^{4} ] \), then we have Λf(xf) ≥ Λ 0f and Λf2(xf) ≥ Λ 0f2 ;

      • if \( x_{f} \in [\bar{x}_{f}^{4} ,\;\bar{x}_{f}^{2} ] \), then we have Λf(xf) ≤ Λ 0f and Λf2(xf) ≥ Λ 0f2 ; and

      • if \( x_{f} \in [\bar{x}_{f}^{2} ,\;\bar{x}^{0} ] \), then we have Λf(xf) ≤ Λ 0f and Λf2(xf) ≤ Λ 0f2 .

    • (b) when

      $$ \begin{aligned} \bar{x}_{f}^{2} & = \frac{{dc_{2} }}{{(p_{f} - c_{2} )\mu_{1} v}} - \frac{1}{(\alpha - 1)} \ge \bar{x}^{0} \Leftrightarrow p_{f} \\ & \le \frac{{dc_{2} }}{{\mu_{1} v\{ 1 - {{\varphi \lambda } \mathord{\left/ {\vphantom {{\varphi \lambda } {\mu_{1} }}} \right. \kern-0pt} {\mu_{1} }} - d / [(\alpha v - p)\mu_{1} ]+ 1/(\alpha - 1)\} }} + c_{2} \\ \end{aligned} $$

      and \( \bar{x}_{f}^{4} = \frac{{dc_{2} }}{{p_{f} \mu_{1} v}} - \frac{1}{(\alpha - 1)} \le \bar{x}^{0} \Leftrightarrow p_{f} \ge \frac{{dc_{2} }}{{\mu_{1} v\{ 1 - {{\varphi \lambda } \mathord{\left/ {\vphantom {{\varphi \lambda } {\mu_{1} }}} \right. \kern-0pt} {\mu_{1} }} - d / [(\alpha v - p)\mu_{1} ]+ 1/(\alpha - 1)\} }} \),

      • if \( x_{f} \in [ 0 ,\;\bar{x}_{f}^{4} ] \), then we have Λf(xf) ≥ Λ 0f and \( \Lambda_{f2} (x_{f} ) \ge \Lambda_{f2}^{0} \);

      • if \( x_{f} \in [\bar{x}_{f}^{4} ,\;\bar{x}^{0} ] \), then we have Λf(xf) ≤ Λ 0f and Λf2(xf) ≥ Λ 0f2

    • (c) when \( \bar{x}_{f}^{4} = \frac{{dc_{2} }}{{p_{f} \mu_{1} v}} - \frac{1}{(\alpha - 1)} \ge \bar{x}^{0} \Leftrightarrow p_{f} \le \frac{{dc_{2} }}{{\mu_{1} v\{ 1 - {{\varphi \lambda } \mathord{\left/ {\vphantom {{\varphi \lambda } {\mu_{1} }}} \right. \kern-0pt} {\mu_{1} }} - d / [(\alpha v - p)\mu_{1} ]+ 1/(\alpha - 1)\} }} \), for any \( x_{f} \in [0 ,\;\bar{x}^{0} ] \), we have Λf(xf) ≥ Λ 0f and Λf2(xf) ≥ Λ 0f2 .

This completes the proof. □

1.4 Proof of Lemma 2

When xf = 0, we have \( \left. {\Lambda_{f} (x_{f} )} \right|_{{x_{f} = 0}} = \hbox{min} \left\{ {\mu_{1} + B/c_{2} - d /(\alpha v - p) - {d \mathord{\left/ {\vphantom {d v}} \right. \kern-0pt} v},\;\lambda } \right\} = \lambda \).

Hence, Λf(xf) − λ = μ1 + B/c2 − (pf/c2)xfμ1 − d/(αv − p) − d/[β(xf) · v] − λ.

We have

$$ \begin{aligned} \Lambda_{f} \left( {x_{f} } \right) - \lambda & \ge 0 \Leftrightarrow [\mu_{1} + B/c_{2} - \lambda - d /(\alpha v - p)] \\ & \ge {{(p_{f} } \mathord{\left/ {\vphantom {{(p_{f} } {c_{2} }}} \right. \kern-0pt} {c_{2} }})x_{f} \mu_{1} + {d \mathord{\left/ {\vphantom {d {\{ [1 + x_{f} (\alpha - 1)] \cdot v\} }}} \right. \kern-0pt} {\{ [1 + x_{f} (\alpha - 1)] \cdot v\} }} \\ & \Leftrightarrow b_{f} [{1 \mathord{\left/ {\vphantom {1 {(\alpha - 1)}}} \right. \kern-0pt} {(\alpha - 1)}} + x_{f} ] \ge \mu_{1} (\alpha - 1)[{1 \mathord{\left/ {\vphantom {1 {(\alpha - 1)}}} \right. \kern-0pt} {(\alpha - 1)}} + x_{f} ]x_{f} \\ & \quad + (d/v)(c_{2} /p_{f} ) \\ & \Leftrightarrow \mu_{1} (\alpha - 1)x_{f}^{2} + (\mu_{1} - b_{f} )x_{f} + (d/v)(c_{2} /p_{f} ) \\ & \quad - {{b_{f} } \mathord{\left/ {\vphantom {{b_{f} } {(\alpha - 1)}}} \right. \kern-0pt} {(\alpha - 1)}} \le 0 \Leftrightarrow 0 \le x_{f} \le \bar{x}_{f}^{1} , \\ \end{aligned} $$

where

$$ \begin{aligned} b_{f} & = (\alpha - 1)(c_{2} /p_{f} )[\mu_{1} + B/c_{2} - \lambda - {d \mathord{\left/ {\vphantom {d {(\alpha v - p)]}}} \right. \kern-0pt} {(\alpha v - p)]}}; \\ \bar{x}_{f}^{1} & = \frac{{(b_{f} - \mu_{1} ) + \sqrt {(\mu_{1} + b_{f} )^{2} - 4\mu_{1} (d/v)(\alpha - 1)(c_{2} /p_{f} )} }}{{2(\alpha - 1)\mu_{1} }}. \\ \end{aligned} $$

We further have

$$ \bar{x}_{f}^{1} \le \bar{x}^{0} \Leftrightarrow p_{f} \ge \hat{p}_{f}^{0} \triangleq \frac{{c_{2} }}{{\mu_{1} \bar{x}^{0} }}\left\{ {\mu_{1} + \frac{B}{{c_{2} }} - \lambda - \frac{d}{\alpha v - p} - \frac{d}{{v[(\alpha - 1)\bar{x}^{0} + 1]}}} \right\}, $$

where

$$ \hat{p}_{f}^{0} = \frac{{c_{2} }}{{\mu_{1} \bar{x}^{0} }}\left\{ {\mu_{1} + \frac{B}{{c_{2} }} - \lambda - \frac{d}{\alpha v - p} - \frac{d}{{v[(\alpha - 1)\bar{x}^{0} + 1]}}} \right\}. $$
  • If \( p_{f} \ge \hat{p}_{f}^{0} \), then we have Λf(xf) ≤ λ for any \( \bar{x}_{f}^{1} \le x_{f} \le \bar{x}^{0} \), and Λf(xf) ≥ λ for any \( 0 \le x_{f} \le \bar{x}_{f}^{1} \).

  • If \( 0 < p_{f} < \hat{p}_{f}^{0} \), then we have Λf(xf) > λ for any \( 0 \le x_{f} \le \bar{x}^{0} \).

This completes the proof. □

1.5 Proof of Proposition 3

When xf = 0, we have Π 01  = p(λ − λ 02 ) − c1μ1.

When \( x_{f} = \bar{x}_{f}^{1} \), we have \( \tilde{\Pi }_{f1}^{ * } = \tilde{\Pi }_{f1}^{1 * } \),

$$ \tilde{\Pi }_{f1}^{1 * } = p(1 - \bar{x}_{f}^{1} )\mu_{1} - \frac{{dc_{2} }}{{[1 + (\alpha - 1)\bar{x}_{f}^{1} ]v}} - \frac{{d(p + c_{ 2} )}}{\alpha v - p} - c_{1} \mu_{1} + B + c_{2} (\mu_{1} - \lambda ). $$

\( \tilde{\Pi }_{f1}^{ * } \ge \Pi_{1}^{0} \Leftrightarrow \)\( p_{f}^{ * } \ge \hat{p}_{f}^{1} \triangleq \frac{{c_{2} }}{{\mu_{1} \hat{x}^{1} }}\left\{ {(\mu_{1} - \lambda ) + \frac{B}{{c_{2} }} - \frac{d}{\alpha v - p} - \frac{d}{{v[(\alpha - 1)\hat{x}^{1} + 1]}}} \right\} \), where

$$ \begin{aligned} \hat{x}^{1} & = \frac{{(Y - \mu_{1} ) + \sqrt {(Y + \mu_{1} )^{2} - 4\mu_{1} (d/v)(\alpha - 1)(c_{2} /p)} }}{{2(\alpha - 1)\mu_{1} }}; \\ Y & = (\alpha - 1)\left\{ {\mu_{1} - (\lambda - \lambda_{2}^{0} ) - \frac{d}{\alpha v - p} + \frac{{c_{2} }}{p}\left[ {(\mu_{1} - \lambda ) + \frac{B}{{c_{2} }} - \frac{d}{\alpha v - p}} \right]} \right\}. \\ \end{aligned} $$

When \( x_{f} = \bar{x}^{0} \), we have \( \Pi_{f1}^{1} = p\varphi \lambda - c_{1} \mu_{1} + p_{f} \mu_{1} \bar{x}^{0} \), and then \( \Pi_{f1}^{1} \ge \Pi_{1}^{0} \Leftrightarrow \) \( p_{f} \in [\hat{p}_{f}^{2} ,\;\infty ) \), where \( \hat{p}_{f}^{2} = \frac{{p[(1 - \varphi )\lambda - \lambda_{2}^{0} ]}}{{\mu_{1} \bar{x}^{0} }} \).

Considering the impact of B, when \( \tilde{B}^{0} < B \le \tilde{B}^{1} \), we have \( \hat{p}_{f}^{2} \ge \hat{p}_{f}^{0} \), where

$$ \begin{aligned} X_{1} & = \frac{{c_{2} }}{p}\left\{ {\mu_{1} - \lambda - \frac{d}{\alpha v - p} - \frac{d}{{v[(\alpha - 1)\bar{x}^{0} + 1]}}} \right\} \\ & \quad - (\mu_{1} - \varphi \lambda ) + \frac{d}{(\alpha - 1)v - p}; \\ \tilde{B}^{1} & = \frac{{\sqrt {\left[ {\frac{1}{{c_{2} }}X_{1} - \frac{1}{p}\left( {\mu_{1} - \lambda } \right)} \right]^{2} + \frac{1}{p}\left( {\frac{1}{{c_{2} }} + \frac{1}{p}} \right)\frac{4d}{{[(\alpha - 1)v - p]^{2} }}} - \left[ {X_{1} \left( {\frac{1}{{c_{2} }} + \frac{2}{p}} \right) + \frac{1}{p}\left( {\mu_{1} - \lambda } \right)} \right]}}{{\frac{2}{p}\left( {\frac{1}{{c_{2} }} + \frac{1}{p}} \right)}}. \\ \end{aligned} $$

Consequently, this completes the proof for Proposition 3. □

1.6 Proof of Proposition 4

Based on Proposition 2, we have \( \arg\mathop {\hbox{max} }\nolimits_{{\mu_{2} }} \{\lambda_{q2} (\mu_{2} )\} = \hbox{max} \mathop {\arg}\nolimits_{{\mu_{2} }} \left\{ {\Pi_{q2} (\mu_{2} ) \ge 0} \right\} \).

Since the expected profit of Hospital 2 is \( \Pi_{q2} (\mu_{2} ) = B - c_{2} \mu_{2} - p_{q} (\lambda_{q 2} - \lambda_{2}^{0} ) \), thus, if \( \lambda_{q2} = \tilde{\lambda }_{q2} \), we get \( \frac{{\partial \Pi_{q2} (\mu_{2} )}}{{\partial \mu_{2} }} = - c_{2} - p_{q} \frac{{\partial \lambda_{q 2} }}{{\partial \mu_{2} }} \).

  • If \( \hbox{min} \{ \Lambda_{q} ,\;\lambda \} = \lambda \Leftrightarrow \mu_{2} \ge \lambda - \mu_{1} + \frac{d}{\alpha v - p} + \frac{d}{{[1 + x_{q} (\alpha - 1)] \cdot v}} \), we have

    $$ \frac{{\partial \tilde{\lambda }_{q2} }}{{\partial \mu_{2} }} = \frac{ 1}{ 2}\left[ { 1- \frac{{\left( {\frac{{\mu_{1} + \mu_{2} - \lambda }}{2}} \right)}}{{\sqrt {\left( {\frac{{\mu_{1} + \mu_{2} - \lambda }}{2}} \right)^{2} + \left\{ {\frac{d}{[\alpha - \beta (x)]v - p}} \right\}^{2} } }}} \right] \ge 0; $$
  • if \( \hbox{min} \{ \Lambda_{q} ,\;\lambda \} = \Lambda_{q} \Leftrightarrow \mu_{2} \le \lambda - \mu_{1} + \frac{d}{\alpha v - p} + \frac{d}{{[1 + x_{q} (\alpha - 1)] \cdot v}} \), we have \( \frac{{\partial \tilde{\lambda }_{q2} }}{{\partial \mu_{2} }} = 1\ge 0. \) Hence, \( \frac{{\partial \Pi_{q2} (\mu_{2} )}}{{\partial \mu_{2} }} \le 0 \). Denoting μq2*(xq) as Hospital 2’s optimal capacity level under the PP scheme for any given xq, then we show that \( \mu_{q2}^{ * } (x_{q} ) = \arg\mathop {\hbox{max} }\nolimits_{{\mu_{2} }} \{\lambda_{q2} (\mu_{2} )\} = \mathop {\arg}\nolimits_{{\mu_{2} }} \left\{ {\Pi_{q2} (\mu_{2} ) = 0} \right\} \).

  1. (1)

    If \( \hbox{min} \{ \Lambda_{q} ,\;\lambda \} = \Lambda_{q} \Leftrightarrow \mu_{2} \le \lambda - \mu_{1} + \frac{d}{\alpha v - p} + \frac{d}{{[1 + x_{q} (\alpha - 1)] \cdot v}} \), under the condition of \( x_{q} \le \bar{x}^{ 0} \), we have \( B - c_{2} \mu_{2} - p_{q} (\lambda_{q 2} - \lambda_{2}^{0} ) = 0 \Leftrightarrow \lambda_{q 2} = \lambda_{2}^{0} + {B \mathord{\left/ {\vphantom {B {p_{q} }}} \right. \kern-0pt} {p_{q} }} - ({{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} }}} \right. \kern-0pt} {p_{q} }})\mu_{2} \Leftrightarrow \)

    $$\begin{aligned} & \mu_{q2}^{ * } (x_{q} ) = \frac{{\lambda_{2}^{0} + {B \mathord{\left/ {\vphantom {B {p_{q} }}} \right. \kern-0pt} {p_{q} }} - x_{q} \mu_{1} + \sqrt {h_{1}^{2} + h_{2}^{2} } + h_{1} - h_{2} }}{{ 1+ {{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} }}} \right. \kern-0pt} {p_{q} }}}}\;{\text{and}}\;x_{q} \in X_{q}^{ 1} ,\\ & \quad {\text{where}}\;h_{1} = \frac{d}{2(\alpha v - p)} + \frac{d}{{2[1 + x_{q} (\alpha - 1)] \cdot v}};\quad h_{2} = \frac{d}{{[(1 - x_{q} )(\alpha - 1)]v - p}}; \hfill \\ & \quad X_{q}^{1} = \left\{ {\left. {x_{q} } \right|0 < \sqrt {h_{1}^{2} + h_{2}^{2} } + h_{1} - h_{2} - x_{q} \mu_{1} \le ( 1+ {{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} )}}} \right. \kern-0pt} {p_{q} )}}(\lambda - \mu_{1} + 2h_{1} ) - \lambda_{2}^{0} + {B \mathord{\left/ {\vphantom {B {p_{q} \;{\text{and}}\;x_{q} < \tilde{x}_{q}^{0} }}} \right. \kern-0pt} {p_{q} \;{\text{and}}\;x_{q} < \tilde{x}_{q}^{0} }}} \right\}. \hfill \\ \end{aligned} $$
  2. (2)

    If \( \hbox{min} \{ \Lambda_{q} ,\;\lambda \} = \lambda \Leftrightarrow \mu_{2} \ge \lambda - \mu_{1} + \frac{d}{\alpha v - p} + \frac{d}{{[1 + x_{q} (\alpha - 1)]v}} \), with \( x_{q} \le \bar{x}^{ 0} \), we have

    $$ \begin{aligned} B - c_{2} \mu _{2} - p_{q} (\lambda _{{q{\text{2}}}} - \lambda _{{q2}}^{0} ) & = 0 \Leftrightarrow \lambda _{{q{\text{2}}}} = \lambda _{{q2}}^{0} + \frac{{B - c_{2} \mu _{2} }}{{p_{q} }} \Leftrightarrow \frac{{\mu _{2} + \mu _{1} - \lambda }}{2} \\ & \quad + \frac{d}{{[\alpha - \beta (x_{q} )]v - p}} + (x_{q} - 1)\mu _{1} + \lambda - \left( {\lambda _{{q2}}^{0} + \frac{{B - c_{2} \mu _{2} }}{{p_{q} }}} \right)\left( { > 0} \right) \\ & = \sqrt {\left( {\frac{{\mu _{1} + \mu _{2} - \lambda }}{2}} \right)^{2} + \left\{ {\frac{d}{{[\alpha - \beta (x_{q} )]v - p}}} \right\}^{2} } \Leftrightarrow \\ \end{aligned} $$
    $$ \begin{aligned} & \left\{ {\left[ {(x_{q} - 1)\mu _{1} + \lambda } \right] - \left( {\lambda _{2}^{0} + \frac{{B - c_{2} \mu _{2} }}{{p_{q} }}} \right)} \right\}^{2} + \left\{ {\left[ {(x_{q} - 1)\mu _{1} + \lambda } \right] - \left( {\lambda _{2}^{0} + \frac{{B - c_{2} \mu _{2} }}{{p_{q} }}} \right)} \right\} \\ & \quad \cdot \left\{ { - \frac{{p_{q} }}{{c_{2} }}\left( {\lambda _{2}^{0} + \frac{{B - c_{2} \mu _{2} }}{{p_{q} }}} \right) + \left\{ {\frac{{p_{q} }}{{c_{2} }}\left( {\lambda _{2}^{0} + \frac{B}{{p_{q} }}} \right) + \mu _{1} - \lambda + \frac{{{\text{2}}d}}{{[\alpha - \beta (x_{q} )]v - p}}} \right\}} \right\} \\ & \quad + \frac{{d\left\{ { - \frac{{p_{q} }}{{c_{2} }}\left( {\lambda _{2}^{0} + \frac{{B - c_{2} \mu _{2} }}{{p_{q} }}} \right) + \left[ {\frac{{p_{q} }}{{c_{2} }}\left( {\lambda _{2}^{0} + \frac{B}{{p_{q} }}} \right) + \mu _{1} - \lambda } \right]} \right\}}}{{[\alpha - \beta (x_{q} )]v - p}} = 0 \Leftrightarrow \\ \end{aligned} $$
    $$\begin{aligned} & a\left( {\lambda _{2}^{0} + \frac{{B - c_{2} \mu _{2} }}{{p_{q} }}} \right)^{2} - b\left( {\lambda _{2}^{0} + \frac{{B - c_{2} \mu _{2} }}{{p_{q} }}} \right) + c = 0\; \Leftrightarrow \\ & \mu _{{q2}}^{ * } (x_{q} ) = \frac{{p_{q} }}{{c_{2} }} \cdot \left( {\lambda _{2}^{0} + \frac{B}{{p_{q} }} - \frac{{b - \sqrt {b^{2} - 4ac} }}{{2a}}} \right){\text{ and }}\;x_{q} \in X_{q}^{2} , \\ \end{aligned} $$
    $$\begin{aligned} & \text{where} \; \\ & \quad a = 1 + \frac{{p_{q} }}{{c_{2} }};b = \left\{ {\left( {2 + \frac{{p_{q} }}{{c_{2} }}} \right)\left\{ {\left[ {(x_{q} - 1)\mu _{1} + \lambda } \right] + \frac{d}{{\left[ {(1 - x_{q} )(\alpha - 1)} \right]v - p}}} \right\} + \frac{{p_{q} }}{{c_{2} }}\left( {\lambda _{2}^{0} + \frac{B}{{p_{q} }}} \right) + \mu _{1} - \lambda } \right\}; \\ & \quad c = \left[ {(x_{q} - 1)\mu _{1} + \lambda } \right]\left\{ {\frac{{p_{q} }}{{c_{2} }}\left( {\lambda _{2}^{0} + \frac{B}{{p_{q} }}} \right) + x_{q} \mu _{1} + \frac{{{\text{2}}d}}{{\left[ {(1 - x_{q} )(\alpha - 1)} \right]v - p}}} \right\} + \frac{{d\left[ {\frac{{p_{q} }}{{c_{2} }}\left( {\lambda _{2}^{0} + \frac{B}{{p_{q} }}} \right) + \mu _{1} - \lambda } \right]}}{{\left[ {(1 - x_{q} )(\alpha - 1)} \right]v - p}}; \\ & \quad X_{q}^{2} = \left\{ {\left. {x_{q} } \right|\frac{{p_{q} }}{{c_{2} }}\left( {\lambda _{2}^{0} + \frac{B}{{p_{q} }} - \frac{{b - \sqrt {b^{2} - 4ac} }}{{2a}}} \right) > \max \left\{ {\lambda - \mu _{1} + 2h_{1} ,\;\frac{{\lambda _{2}^{0} + {B \mathord{\left/ {\vphantom {B {p_{q} }}} \right. \kern-\nulldelimiterspace} {p_{q} }}}}{{1 + {{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} }}} \right. \kern-\nulldelimiterspace} {p_{q} }}}}} \right\}{\text{and}}\;x_{q} < \tilde{x}_{q}^{0} } \right\}. \\ \end{aligned} $$

Consequently, this completes the proof. □

1.7 Proof of Proposition 5

When min {Λq(xq), λ} = λ, i.e., Λq(xq) ≥ λ, we have Πq1(xq) = pqλ 01  − (pq − p)λq1(xq) − c1μ1. Since Hospital 1’s expected profit under no performance payment scheme is \( \Pi_{ 1}^{ 0} = p\lambda_{1}^{0} - c_{1} \mu_{1} , \) we further have

$$ \Pi_{q1} (x_{q} ) > \Pi_{ 1}^{ 0} \Leftrightarrow (p_{q} - p)[\lambda_{1}^{0} - \lambda_{q1} (x_{q} )] > 0 \Leftrightarrow p_{q} > p; $$

\( \Pi_{q1} (x_{q} ) = \Pi_{ 1}^{ 0} \Leftrightarrow p_{q} = p; \) \( \Pi_{q1} (x_{q} ) < \Pi_{ 1}^{ 0} \Leftrightarrow p_{q} < p. \)When min {Λq(xq), λ} = Λq(xq), we have \( \Pi_{q1} (x_{q} ) = p\Lambda_{q} (x_{q} ) - c_{1} \mu_{1} + (p_{q} - p)\lambda_{q 2} (x_{q} ) - p_{s} \lambda_{2}^{0}. \) Taking the first-order derivative of Πq1(xq) with respect to xq, we get

$$ \begin{aligned} {{\partial \Pi_{q1} (x_{q} )} \mathord{\left/ {\vphantom {{\partial \Pi_{q1} (x_{q} )} {\partial x_{q} }}} \right. \kern-0pt} {\partial x_{q} }} & = p{{\partial \lambda_{q 1} (x_{q} )} \mathord{\left/ {\vphantom {{\partial \lambda_{q 1} (x_{q} )} {\partial x_{q} }}} \right. \kern-0pt} {\partial x_{q} }} + p_{q} {{\partial \lambda_{q 2} (x_{q} )} \mathord{\left/ {\vphantom {{\partial \lambda_{q 2} (x_{q} )} {\partial x_{q} }}} \right. \kern-0pt} {\partial x_{q} }} \\ & \le p{{\partial \mu_{q 2}^{ * } (x_{q} )} \mathord{\left/ {\vphantom {{\partial \mu_{q 2}^{ * } (x_{q} )} {\partial x_{q} }}} \right. \kern-0pt} {\partial x_{q} }} - p_{q} \cdot ({{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} }}} \right. \kern-0pt} {p_{q} }}) \cdot {{\partial \mu_{q 2}^{ * } (x_{q} )} \mathord{\left/ {\vphantom {{\partial \mu_{q 2}^{ * } (x_{q} )} {\partial x_{q} }}} \right. \kern-0pt} {\partial x_{q} }} \le 0. \\ \end{aligned} $$

When \( \begin{aligned} \lambda_{q 2} (x_{q} ) & = \lambda_{2}^{0} + {B \mathord{\left/ {\vphantom {B {p_{s} }}} \right. \kern-0pt} {p_{s} }} - ({{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} }}} \right. \kern-0pt} {p_{q} }})\mu_{q 2}^{ * } (x_{q} ) \\ & = \mu_{q 2}^{ * } (x_{q} ) + x_{q} \mu_{1} - \frac{d}{{[1 + x_{q} (\alpha - 1)] \cdot v}} \\ \end{aligned} \), we have \( \mu_{q 2}^{ * } (x_{q} ) = \frac{{\lambda_{2}^{0} + {B \mathord{\left/ {\vphantom {B {p_{s} }}} \right. \kern-0pt} {p_{s} }} - x_{q} \mu_{1} }}{{[1 + ({{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} }}} \right. \kern-0pt} {p_{q} }})]}} + \frac{{{d \mathord{\left/ {\vphantom {d v}} \right. \kern-0pt} v}}}{{[1 + ({{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} }}} \right. \kern-0pt} {p_{q} }})][1 + x_{q} (\alpha - 1)]}} \), when \( \Lambda_{q} (x_{q} ) - \lambda = \mu_{1} + \mu_{q 2}^{ * } (x_{q} ) - \frac{d}{\alpha v - p} - \frac{d}{{\beta (x_{q} ) \cdot v}} - \lambda \ge 0 \), we have

$$ \lambda \le \mu_{1} - \frac{d}{\alpha v - p} + \frac{{\lambda_{2}^{0} + {B \mathord{\left/ {\vphantom {B {p_{q} }}} \right. \kern-0pt} {p_{q} }}}}{{ 1+ {{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} }}} \right. \kern-0pt} {p_{q} }}}} - \frac{{x_{q} \mu_{1} }}{{ 1+ {{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} }}} \right. \kern-0pt} {p_{q} }}}} - \frac{{{{(c_{2} } \mathord{\left/ {\vphantom {{(c_{2} } {p_{q} )}}} \right. \kern-0pt} {p_{q} )}} \cdot {{(d} \mathord{\left/ {\vphantom {{(d} {v)}}} \right. \kern-0pt} {v)}}}}{{( 1+ {{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} }}} \right. \kern-0pt} {p_{q} }})[1 + x_{q} (\alpha - 1)]}} \Leftrightarrow $$
$$ {{(c_{2} } \mathord{\left/ {\vphantom {{(c_{2} } {p_{q} )}}} \right. \kern-0pt} {p_{q} )}}{{(d} \mathord{\left/ {\vphantom {{(d} {v)}}} \right. \kern-0pt} {v)}} + x_{q} \mu_{1} [1 + x_{q} (\alpha - 1)] \le ( 1+ {{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} }}} \right. \kern-0pt} {p_{q} }})\left[ {\left( {\mu_{1} - \frac{d}{\alpha v - p} + \frac{{\lambda_{2}^{0} + {B \mathord{\left/ {\vphantom {B {p_{q} }}} \right. \kern-0pt} {p_{q} }}}}{{ 1+ {{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} }}} \right. \kern-0pt} {p_{q} }}}}} \right) - \lambda } \right][1 + x_{q} (\alpha - 1)] $$

\( \Leftrightarrow \mu_{1} (\alpha - 1)x_{q}^{2} + (\mu_{1} - b_{q} )x_{q} - {{b_{q} } \mathord{\left/ {\vphantom {{b_{q} } {(\alpha - 1)}}} \right. \kern-0pt} {(\alpha - 1)}} + {{(c_{2} } \mathord{\left/ {\vphantom {{(c_{2} } {p_{q} )}}} \right. \kern-0pt} {p_{q} )}}{{(d} \mathord{\left/ {\vphantom {{(d} {v)}}} \right. \kern-0pt} {v)}} \le 0 \Leftrightarrow 0 < x_{q}^{{}} \le \bar{x}_{q}^{1} , \) where

$$ b_{q} = (\alpha - 1)\left\{ {\frac{1}{{p_{q} }}\left[ {c_{2} \left( {\mu_{1} - \lambda - \frac{d}{\alpha v - p}} \right) + B} \right] + \left( {\mu_{1} - \lambda - \frac{d}{\alpha v - p} + \lambda_{2}^{0} } \right)} \right\}; $$
$$ \bar{x}_{q}^{1} = \frac{{\sqrt {(\mu_{1} + b_{q} )^{2} - {{4(\mu_{1} } \mathord{\left/ {\vphantom {{4(\mu_{1} } {v)}}} \right. \kern-0pt} {v)}}(\alpha - 1)(c_{2} /p_{q} )} - (\mu_{1} - b_{q} )}}{{2(\alpha - 1)\mu_{1} }}. $$

\( \bar{x}_{q}^{1} < \bar{x}^{0} \Leftrightarrow p_{q} > \hat{p}_{q}^{0} \), where

$$ \begin{aligned} \hat{p}_{q}^{0} & = c_{2} \cdot \frac{{\left\{ {{B \mathord{\left/ {\vphantom {B {c_{2} }}} \right. \kern-0pt} {c_{2} }} + \mu_{1} - \lambda - {d \mathord{\left/ {\vphantom {d {(\alpha v - p)}}} \right. \kern-0pt} {(\alpha v - p)}} - {d \mathord{\left/ {\vphantom {d {\{ v[1 + (\alpha - 1)\bar{x}^{0} ]\} }}} \right. \kern-0pt} {\{ v[1 + (\alpha - 1)\bar{x}^{0} ]\} }}} \right\}}}{{\lambda - \{ [(1 - \bar{x}^{0} )\mu_{1} - {d \mathord{\left/ {\vphantom {d {(\alpha v - p)}}} \right. \kern-0pt} {(\alpha v - p)}}] + \lambda_{2}^{0} \} }}, \\ \lambda_{2}^{0} & = \frac{{{B \mathord{\left/ {\vphantom {B {c_{2} }}} \right. \kern-0pt} {c_{2} }} - \mu_{1} + \lambda }}{2} + \frac{d}{(\alpha - 1)v - p} - \sqrt {\left\{ {\frac{{{B \mathord{\left/ {\vphantom {B {c_{2} }}} \right. \kern-0pt} {c_{2} }} + \mu_{1} - \lambda }}{2}} \right\}^{2} + \frac{{d^{2} }}{{[(\alpha - 1)v - p]^{2} }}}. \\ \end{aligned} $$

Thus, when pq ∊ [0, p), we have xq* = 0; when \( p_{f} \in [p,\;\hat{p}_{q}^{0} ] \), we have \( x_{q}^{ * } = \bar{x}^{0} \); when \( p_{q} \in [\hat{p}_{q}^{0} \wedge p,\;\infty ) \), we have \( x_{q}^{ * } = \bar{x}_{q}^{1} \). This concludes the proof. □

1.8 Proof of Proposition 6

By Eqs. (16) and (23), taking the first-order derivative of \( \bar{x}_{f}^{1} \) and \( \bar{x}_{q}^{1} \) with respect to pf and pq, respectively, we have

$$ \frac{{\partial \bar{x}_{f}^{1} }}{{\partial p_{f} }} = \frac{{\left\{ \begin{aligned} \frac{{\left\{ \begin{aligned} \mu_{1} + (\alpha - 1)\left( {{{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{f} }}} \right. \kern-0pt} {p_{f} }}} \right)\left[ {\mu_{1} + B/c_{2} - \lambda - d/\left( {\alpha v - p} \right)} \right] \hfill \\ \cdot \left( {\alpha - 1} \right)\left[ {\mu_{1} + B/c_{2} - \lambda - d/\left( {\alpha v - p} \right)} \right] - 4\mu_{1} \left( {d/v} \right)\left( {\alpha - 1} \right) \hfill \\ \end{aligned} \right\}}}{{\sqrt {\left\{ {\mu_{1} + (\alpha - 1)\left[ {( 1+ \frac{{c_{2} }}{{p_{q} }})\left( {\mu_{1} - \lambda - \frac{d}{\alpha v - p}} \right) + \lambda_{2}^{0} + {B \mathord{\left/ {\vphantom {B {p_{q} }}} \right. \kern-0pt} {p_{q} }}} \right]} \right\}^{2} - \frac{{4\mu_{1} (\alpha - 1)}}{v} \cdot \frac{{c_{2} }}{{p_{q} }}} }} \hfill \\ + (\alpha - 1)\left[ {\left( {\mu_{1} - \lambda - \frac{d}{\alpha v - p}} \right)\frac{{\partial ({{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} )}}} \right. \kern-0pt} {p_{q} )}}}}{{\partial p_{q} }} + \frac{{\partial ({B \mathord{\left/ {\vphantom {B {p_{q} )}}} \right. \kern-0pt} {p_{q} )}}}}{{\partial p_{q} }}} \right] \hfill \\ \end{aligned} \right\}}}{{2(\alpha - 1)\mu_{1} }} \le 0. $$
$$ \frac{{\partial \bar{x}_{q}^{1} }}{{\partial p_{q} }} = \frac{{\left\{ \begin{aligned} \frac{{\left\{ \begin{aligned} \left\{ {\mu_{1} + (\alpha - 1)\left[ {( 1+ {{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} }}} \right. \kern-0pt} {p_{q} }})\left( {\mu_{1} - \lambda - \frac{d}{\alpha v - p}} \right) + \left( {\lambda_{2}^{0} + {B \mathord{\left/ {\vphantom {B {p_{q} }}} \right. \kern-0pt} {p_{q} }}} \right)} \right]} \right\}(\alpha - 1) \hfill \\ \cdot \left[ {\left( {\mu_{1} - \lambda - \frac{d}{\alpha v - p}} \right)\frac{{\partial ({{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} )}}} \right. \kern-0pt} {p_{q} )}}}}{{\partial p_{q} }} + \frac{{\partial ({B \mathord{\left/ {\vphantom {B {p_{q} )}}} \right. \kern-0pt} {p_{q} )}}}}{{\partial p_{q} }}} \right] - \frac{{4\mu_{1} }}{v}(\alpha - 1)\frac{{\partial ({{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} )}}} \right. \kern-0pt} {p_{q} )}}}}{{\partial p_{q} }} \hfill \\ \end{aligned} \right\}}}{{\sqrt {\left\{ {\mu_{1} + (\alpha - 1)\left[ {( 1+ \frac{{c_{2} }}{{p_{q} }})\left( {\mu_{1} - \lambda - \frac{d}{\alpha v - p}} \right) + \lambda_{2}^{0} + {B \mathord{\left/ {\vphantom {B {p_{q} }}} \right. \kern-0pt} {p_{q} }}} \right]} \right\}^{2} - \frac{{4\mu_{1} (\alpha - 1)}}{v} \cdot \frac{{c_{2} }}{{p_{q} }}} }} \hfill \\ + (\alpha - 1)\left[ {\left( {\mu_{1} - \lambda - \frac{d}{\alpha v - p}} \right)\frac{{\partial ({{c_{2} } \mathord{\left/ {\vphantom {{c_{2} } {p_{q} )}}} \right. \kern-0pt} {p_{q} )}}}}{{\partial p_{q} }} + \frac{{\partial ({B \mathord{\left/ {\vphantom {B {p_{q} )}}} \right. \kern-0pt} {p_{q} )}}}}{{\partial p_{q} }}} \right] \hfill \\ \end{aligned} \right\}}}{{2(\alpha - 1)\mu_{1} }} \le 0. $$

When \( x_{k}^{ * } (p_{k} ) = \bar{x}_{k}^{1} > \hbox{max} \left\{ {0,\;\sqrt {\frac{d}{v} \cdot \frac{{c_{2} }}{p} \cdot \frac{ 1}{{\mu_{1} (\alpha - 1)}}} - \frac{1}{(\alpha - 1)}} \right\} \), we have \( \lambda_{k1}^{ * } (p_{k} ) = [1 - x_{k}^{ * } (p_{k} )]\mu_{1} - {d \mathord{\left/ {\vphantom {d {(\alpha v - p)}}} \right. \kern-0pt} {(\alpha v - p)}}, \) λk2*(pk) = λ − λk1*(pk), 

$$ \mu_{k2}^{ * } (p_{k} ) = \lambda - \mu_{1} + \frac{d}{\alpha v - p} + \frac{d}{{[1 + (\alpha - 1) \cdot x_{k}^{ * } (p_{k} )]v}}, $$
$$ \begin{aligned} \Pi_{k1}^{ * } (p_{k} ) & = p\left\{ {[1 - x_{k}^{ * } (p_{k} )]\mu_{1} - \frac{d}{\alpha v - p}} \right\} - c_{1} \mu_{1} \\ & \quad + B - c_{2} \left\{ {\lambda - \mu_{1} + \frac{d}{\alpha v - p} + \frac{d}{{[1 + (\alpha - 1)x_{k}^{ * } (p_{f} )]v}}} \right\}, \\ \end{aligned} $$

where k = fq. Hence, we get \( \frac{{\partial \lambda_{k1}^{ * } (p_{k} )}}{{\partial p_{k} }} \le 0,\;\frac{{\partial \mu_{k2}^{ * } (p_{k} )}}{{\partial p_{k} }} \ge 0,\;\frac{{\partial \Pi_{k1}^{ * } (p_{k} )}}{{\partial p_{k} }} \ge 0 \).

Consequently, this completes the proof. □

1.9 Proof of Proposition 7

First, we solve and obtain the optimal capacity sinking rate for the healthcare funder xo. By Eq. (28), we set \( I(x) = [p - ({1 \mathord{\left/ {\vphantom {1 \theta }} \right. \kern-0pt} \theta } - 1)p_{s} ](1 - x)\mu_{1} - \frac{{dc_{2} }}{[1 + (\alpha - 1)x]v} \) and

$$ S_{f} (x) = \theta \left\{ {I(x) - \left\{ {\frac{{d[p + c_{2} - ({1 \mathord{\left/ {\vphantom {1 \theta }} \right. \kern-0pt} \theta } - 1)p_{s} ]}}{\alpha v - p} + c_{1} \mu_{1} - B - c_{2} (\mu_{1} - \lambda ) - ({1 \mathord{\left/ {\vphantom {1 \theta }} \right. \kern-0pt} \theta } - 1)p_{s} \lambda } \right\}} \right\},$$

with \( 0 < x < \bar{x}^{0} \), and thus, we get maxx{I(x)} = maxx{Sf(x)}.

Taking the first-and second-order derivatives of I(x). with respect to x, we have

$$ \begin{aligned} \frac{\partial I(x)}{\partial x} & = \theta \left\{ {\frac{{{{(d} \mathord{\left/ {\vphantom {{(d} v}} \right. \kern-0pt} v})c_{2} (\alpha - 1)}}{{[1 + (\alpha - 1)x]^{2} }} - [p - ({1 \mathord{\left/ {\vphantom {1 \theta }} \right. \kern-0pt} \theta } - 1)p_{s} ]\mu_{1} } \right\}, \\ \frac{{\partial^{2} I(x)}}{{\partial x^{2} }} & = - \frac{{{{2(d} \mathord{\left/ {\vphantom {{2(d} v}} \right. \kern-0pt} v})\theta c_{2} (\alpha - 1)^{2} }}{{[1 + (\alpha - 1)x]^{3} }} \le 0. \\ \end{aligned} $$

Based on

$$ \begin{aligned} \mathop {\hbox{max} }\limits_{{0 \le x \le \bar{x}^{0} }} \left\{ \frac{\partial I(x)}{\partial x} \right\}& = {{(d} \mathord{\left/ {\vphantom {{(d} v}} \right. \kern-0pt} v})c_{2} (\alpha - 1) - \left( {p + p_{s} - \frac{{p_{s} }}{\theta }} \right) \\ \mu_{1} & = 0 \Leftrightarrow {\hat{\text{U}}}\,\theta = \tilde{\theta }^{1} = \frac{{p_{s} \mu_{1} }}{{(p + p_{s} )\mu_{1} - {{(d} \mathord{\left/ {\vphantom {{(d} v}} \right. \kern-0pt} v})c_{2} (\alpha - 1)}}; \\ \end{aligned} $$
$$ \begin{aligned} \mathop {\hbox{min} }\limits_{{0 \le x \le \bar{x}^{0} }} \left\{ \frac{\partial I(x)}{\partial x}\right\} & = \frac{{{{(d} \mathord{\left/ {\vphantom {{(d} v}} \right. \kern-0pt} v})c_{2} (\alpha - 1)}}{{[1 + (\alpha - 1)\bar{x}^{0} ]^{2} }} - \left( {p + p_{s} - \frac{{p_{s} }}{\theta }} \right)\mu_{1} = 0 \\ \Leftrightarrow \theta = \tilde{\theta }^{2} & = \frac{{p_{s} \mu_{1} }}{{(p + p_{s} )\mu_{1} - {{(d} \mathord{\left/ {\vphantom {{(d} v}} \right. \kern-0pt} v})c_{2} (\alpha - 1)[1 + (\alpha - 1)\bar{x}^{0} ]^{ - 2} }}; \\ \end{aligned} $$

thus, when \( 1 > \theta \ge \tilde{\theta }^{1} \), we have \( \frac{\partial I(x)}{\partial x} \le 0 \Rightarrow x^{o} = 0 \).

When \( 0 < \theta \le \tilde{\theta }^{2} \), we have \( \frac{\partial I(x)}{\partial x} \ge 0 \Rightarrow x^{o} = \bar{x}^{0}. \)

When \( \tilde{\theta }^{1} < \theta < \tilde{\theta }^{1} \), if \( x \le \tilde{x}^{o} \), then \( \frac{\partial I(x)}{\partial x} \ge 0 \); if \( x \ge \tilde{x}^{o} \), then \( \frac{\partial I(x)}{\partial x} \le 0 \); hence we get \( x^{o} = \tilde{x}^{o} \), where \( x^{o} = \tilde{x}^{o} \triangleq \sqrt {\frac{{{{(d} \mathord{\left/ {\vphantom {{(d} v}} \right. \kern-0pt} v})c_{2} }}{{(\alpha - 1)[p - ({1 \mathord{\left/ {\vphantom {1 \theta }} \right. \kern-0pt} \theta } - 1)p_{s} ]\mu_{1} }}} - \frac{1}{\alpha - 1} \).

By solving the equation in which \( \tilde{x}^{o} = \bar{x}_{f}^{1} \) with respect to pf, we have \( p_{f} = \tilde{p}_{f}^{ * } \), where

$$ \tilde{p}_{f}^{ * } = \frac{{c_{2} }}{{\mu_{1} \tilde{x}^{o} }}\left\{ {(\mu_{1} - \lambda ) + \frac{B}{{c_{2} }} - \frac{d}{\alpha v - p} - \frac{d}{{v[(\alpha - 1)\tilde{x}^{o} + 1]}}} \right\}. $$

According to Proposition 3, considering the impacts of B, we show:

  1. (1)

    If \( B \ge \tilde{B}^{\text{o}} \), we have \( \tilde{\Pi }_{f1}^{o} \ge \Pi_{1}^{ 0} \), where

    $$ \begin{aligned} \tilde{\Pi }_{f1}^{o} & = p(1 - \tilde{x}^{o} )\mu_{1} - \frac{{dc_{2} }}{{[1 + (\alpha - 1)\tilde{x}^{o} ]v}} - \frac{{d(p + c_{ 2} )}}{\alpha v - p} - c_{1} \mu_{1} + B + c_{2} (\mu_{1} - \lambda ); \\ X_{o} & = \frac{{c_{2} }}{p}\left\{ {\mu_{1} - \lambda - \frac{d}{\alpha v - p} - \frac{d}{{v[(\alpha - 1)\tilde{x}^{o} + 1]}}} \right\} - \mu_{1} \tilde{x}^{o} - \frac{d}{\alpha v - p} + \frac{d}{(\alpha - 1)v - p}; \\ \tilde{B}^{o} & = \frac{{\sqrt {\left[ {\frac{1}{{c_{2} }}X_{o} - \frac{1}{p}\left( {\mu_{1} - \lambda } \right)} \right]^{2} + \frac{1}{p}\left( {\frac{1}{{c_{2} }} + \frac{1}{p}} \right)\frac{4d}{{[(\alpha - 1)v - p]^{2} }}} - \left[ {X_{o} \left( {\frac{1}{{c_{2} }} + \frac{2}{p}} \right) + \frac{1}{p}\left( {\mu_{1} - \lambda } \right)} \right]}}{{\frac{2}{p}\left( {\frac{1}{{c_{2} }} + \frac{1}{p}} \right)}}. \\ \end{aligned} $$
  2. (2)

    If \( \tilde{B}^{ 0} \le B \le \tilde{B}^{o} \), from the results of Proposition 3, we have Πf1*(pf) ≥ Π 01 only when \( x_{f}^{ * } (p_{f} ) \le \hat{x}^{1} \le \tilde{x}^{o} \). By solving the equation in which \( x_{f}^{ * } (p_{f} ) \le \hat{x}^{ 1} \) and then get \( p_{f}^{ * } \ge \hat{p}_{f}^{1}. \)

In sum, when \( \tilde{\theta }^{ 2} < \theta < \tilde{\theta }^{ 1} \), we show that the equilibrium capacity sinking price satisfies as follows:

  1. (a)

    if \( \tilde{B}^{0} \le B < \tilde{B}^{o} \), we have \( p_{f}^{ * } = \hat{p}_{f}^{1} \);

  2. (b)

    if \( B \ge \tilde{B}_{f}^{o} \), we have \( p_{f}^{ * } = \tilde{p}_{f}^{ * } \).

When \( 0 < \theta \le \tilde{\theta }^{2} \), from Eq. (28) and Proposition 5, we have:

  • if \( \tilde{B}^{0} \le B < \tilde{B}^{1} \), then \( p_{f}^{ * } = \hat{p}_{f}^{1} \); if \( B \ge \tilde{B}_{f}^{1} \), then \( p_{f}^{ * } = \hat{p}_{f}^{0} \).

When \( 1 > \theta \ge \tilde{\theta }^{1} \), we have \( p_{f}^{ * } \in [0,\;\hat{p}_{f}^{1} ) \):

  • if \( \tilde{B}^{0} \le B < \tilde{B}^{1} \), then \( p_{f}^{ * } \in [0,\;\hat{p}_{f}^{1} ) \); if \( B \ge \tilde{B}_{f}^{1} \), then \( p_{f}^{ * } \in [0,\;\hat{p}_{f}^{2} ) \).

Consequently, this completes the proof. □

1.10 Proof of Proposition 8

In view of Proposition 7, we first have: when \( \tilde{\theta }^{ 2} < \theta < \tilde{\theta }^{ 1} \), the optimal capacity sinking rate for the funder satisfies \( x^{o} = \tilde{x}^{o} \). In this case, by solving the equation in which \( \tilde{x}^{o} = \bar{x}_{q}^{1} (p_{q} ) \) with respect to pq, we have \( p_{q} = \tilde{p}_{q}^{ * } \), where

$$ \tilde{p}_{q}^{ * } = \frac{{B + c_{2} \left\{ {(\mu_{1} - \lambda ) - {d \mathord{\left/ {\vphantom {d {(\alpha v - p)}}} \right. \kern-0pt} {(\alpha v - p)}} - {d \mathord{\left/ {\vphantom {d {\{ v[1 + (\alpha - 1)\tilde{x}^{o} ]\} }}} \right. \kern-0pt} {\{ v[1 + (\alpha - 1)\tilde{x}^{o} ]\} }}} \right\}}}{{\mu_{1} \tilde{x}^{o} - [(\mu_{1} - \lambda ) - {d \mathord{\left/ {\vphantom {d {(\alpha v - p)}}} \right. \kern-0pt} {(\alpha v - p)}} + \lambda_{2}^{0} ]}}. $$

According to Proposition 5, considering the impacts of B, we show:

  • if \( p \le \tilde{p}_{q}^{ * } \), we have \( B \ge \tilde{B}^{o}. \)

Hence, when \( \tilde{\theta }^{ 2} < \theta < \tilde{\theta }^{ 1} \), we show that the equilibrium capacity sinking price satisfies as follows:

  1. (1)

    if \( \tilde{B}^{0} \le B < \tilde{B}^{o} \), we have pq* = p;

  2. (2)

    if \( \tilde{B}^{o} \le B \), we have \( p_{q}^{ * } = \tilde{p}_{q}^{ * } \).

When \( 0 < \theta \le \tilde{\theta }^{2} \),

  1. (1)

    if \( \tilde{B}^{0} \le B < \tilde{B}^{1} \), we have pq* = p;

  2. (2)

    if \( \tilde{B}^{1} \le B \), we have \( p_{q}^{ * } = \hat{p}_{q}^{ 0} \).

When \( 1 > \theta \ge \tilde{\theta }^{1} \), we have \( p_{q}^{ * } \in [ 0,\;p) \).

This completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZP., Wang, JJ., Chang, AC. et al. Capacity reallocation via sinking high-quality resource in a hierarchical healthcare system. Ann Oper Res 300, 97–135 (2021). https://doi.org/10.1007/s10479-020-03853-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03853-9

Keywords

Navigation