Skip to main content
Log in

Computing multiperiod efficiency using dominance networks

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Dominance Network (DN) analysis has been proposed to assess the efficiency of a set of operating units (OUs) that consume inputs to produce outputs. In a DN, the nodes represent OUs and the arcs correspond to dominance relationships (DR) between them. So far, this analysis has been applied in static scenarios where the OUs belong to the same time period. In this paper, the methodology is extended to the case in which the input and output data refer to multiple time periods tracking the performance evolution of each OU. The proposed Temporal Dominance Network (TDN) contains a node for each OU in each time period. TDN is a weighted directed acyclic graph. There exist contemporaneous DR (between nodes that correspond to the same time period) as well as non-contemporaneous DR (between nodes that correspond to different time periods). The union of these two types of DR defines the TDN. All these DR are transitive, which allows us to represent the TDN by its corresponding skeleton. Various filters and node layouts that can be used to help visualise the TDN are proposed. In addition, a number of network metrics are used to characterise the efficiency of the various OUs in the different periods as well as the corresponding productivity change between any two periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Calzada-Infante, L., & Lozano, S. (2016). Analyzing Olympic games through dominance networks. Physica a Statistical Mechanics and Its Applications, 462, 1215–1230.

    Article  Google Scholar 

  • Calzada-Infante, L., & Lozano, S. (2020). Some variants and extensions of dominance network analysis. Computers & Industrial Engineering, 141, 106275.

    Article  Google Scholar 

  • Castelli, L., Pesenti, R., & Ukovich, W. (2010). A classification of DEA models when the internal structure of the decision making units is considered. Annals of Operations Research, 173, 207–235.

    Article  Google Scholar 

  • Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: a directional distance function approach. Journal of Environmental Management, 51, 229–240.

    Article  Google Scholar 

  • Cooper, W. W., Pastor, J. T., Aparicio, J., & Borras, F. (2011). Decomposing profit inefficiency in DEA through the weighted additive model. European Journal of Operational Research, 212(2), 411–416.

    Article  Google Scholar 

  • Cooper, W. W., Seiford, L. M., & Tone, K. (2006). Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software (2nd ed.). Springer.

    Google Scholar 

  • Cooper, W. W., Seiford, L. M., & Zhu, J. (2004). Handbook on data envelopment analysis. Springer.

    Book  Google Scholar 

  • Fang, T. Y. (2020). Who Is the Keyman? Integrating two-stage DEA and social network analysis to evaluate operational and environmental efficiency in the semiconductor industry. Mathematical Problems in Engineering, 2020, 2926357.

    Google Scholar 

  • Ghahraman, A., & Prior, D. (2016). A learning ladder toward efficiency: Proposing network-based stepwise benchmark selection. Omega, 63, 83–93.

    Article  Google Scholar 

  • Guan, J. C., Zuo, K. R., Chen, K. H., & Yam, R. C. M. (2016). Does country-level R&D efficiency benefit from the collaboration network structure? Research Policy, 45, 770–784.

    Article  Google Scholar 

  • Ho, M. H. C., Liu, J. S., Lu, W. M., & Huang, C. C. (2014). A new perspective to explore the technology transfer efficiencies in US universities. Journal of Technology Transfer, 39(2), 247–275.

    Article  Google Scholar 

  • Hsieh, H. P., Kuo, K. C., Le, M. H., & Lu, W. M. (2021). Exploring the cargo and eco-efficiencies of international container shipping companies: A network-based ranking approach. Managerial and Decision Economics, 42, 45–60.

    Article  Google Scholar 

  • Kleinberg, J. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46, 604–632.

    Article  Google Scholar 

  • Lee, J., & Choi, G. (2019). A dominance-based network method for ranking efficient decision-making units in data envelopment analysis. Sustainability, 11, 2059.

    Article  Google Scholar 

  • Leem, B.-H., & Chun, H. (2015). Measuring the Influence of efficient ports using social network metrics. International Journal of Engineering Business Management, 7, 1.

    Article  Google Scholar 

  • Liu, J. S., & Lu, W. M. (2010). DEA and ranking with the network-based approach: A case of R&D performance. Omega, 38(6), 453–464.

    Article  Google Scholar 

  • Liu, J. S., Lu, W. M., & Ho, M. H. C. (2014). National characteristics: Innovation systems from the process efficiency perspective. R & D Management, 45(4), 317–338.

    Article  Google Scholar 

  • Liu, J. S., Lu, W. M., Yang, C., & Chuang, M. (2009). A network-based approach for increasing discrimination in data envelopment analysis. Journal of the Operational Research Society, 60(11), 1502–1510.

    Article  Google Scholar 

  • Lozano, S. (2014). Company-wide production planning using a multiple technology DEA approach. Journal of the Operational Research, 65, 723–734.

    Article  Google Scholar 

  • Lozano, S., & Calzada-Infante, L. (2017). Dominance network analysis of economic efficiency. Expert Systems with Applications, 82, 53–66.

    Article  Google Scholar 

  • Lozano, S., & Calzada-Infante, L. (2018). Efficiency assessment using network analysis tools. Journal of the Operational Research Society, 69(11), 1803–1818.

    Article  Google Scholar 

  • Lozano, S., & Calzada-Infante, L. (2019). Efficiency ranking using dominance network and multiobjective optimization indexes. Expert Systems with Applications, 126, 83–91.

    Article  Google Scholar 

  • Lozano, S., & Villa, G. (2004). Centralized resource allocation using data envelopment analysis. Journal of Productivity Analysis, 22, 143–161.

    Article  Google Scholar 

  • Lozano, S., & Villa, G. (2006). Data envelopment analysis of integer-valued inputs and outputs. Computer and Operations Research, 33(10), 3004–3014.

    Article  Google Scholar 

  • Lu, W. M., Kweh, Q. L., He, D. S., & Shih, J. M. (2017). Performance analysis of the cultural and creative industry: A network-based approach. Naval Research Logistics, 64, 662–676.

    Article  Google Scholar 

  • O’Donnell, C. J., Rao, D. S. P., & Battese, G. E. (2008). Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empirical Economics, 34, 231–255.

    Article  Google Scholar 

  • Park, K. S., & Park, K. (2009). Measurement of multiperiod aggregative efficiency. European Journal of Operational Research, 193, 567–580.

    Article  Google Scholar 

  • Pastor, J. T., & Lovell, C. A. K. (2005). A global Malmquist productivity index. Economic Letters, 88, 266–271.

    Article  Google Scholar 

  • Simon de Blas, C., Simon Martin, J., & Gomez Gonzalez, D. (2018). Combined social networks and data envelopment analysis for ranking. European Journal of Operational Research, 266(3), 990–999.

    Article  Google Scholar 

Download references

Acknowledgements

This research was carried out with the financial support of the Spanish Ministry of Science and the European Regional Development Fund (ERDF), grant DPI2017-85343-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Calzada-Infante.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Notation

Let

\(D = \left\{ {1,2, \ldots ,n} \right\}\):

: Set of OUs.

j,r,p = 1,2,…,n: :

Indexes on OUs.

i = 1,2,…,m: :

Index on input dimensions.

k = 1,2,…,s: :

Index on output dimensions.

\(x_{j} = \left( {x_{1j} ,x_{2j} , \ldots x_{mj} } \right)\):

: Input vector of OU j.

\(y_{j} = \left( {y_{1j} ,y_{2j} , \ldots y_{sj} } \right)\):

: Output vector of OU j.

\(D(r) = \{ j:\;x_{ij} \le x_{ir} \;\forall i\;\; \wedge \;y_{kj} \ge y_{kr} \;\forall k\;\; \wedge \;\left( {x_{j} ,y_{j} } \right) \ne \left( {x_{r} ,y_{r} } \right)\}\):

: Set of OUs that weakly dominate OU r.

\(D_{{}}^{ - 1} (r) = \left\{ {f:r \in D\left( f \right)} \right\}\):

: Set of OUs that are dominated by OU r.

\(D^{*} = \left\{ {r:D\left( r \right) = \emptyset } \right\}\):

: Set of non-dominated (i.e. efficient) OUs.

\(D_{{}}^{*} (r) = \left\{ {\begin{array}{*{20}c} {\left\{ r \right\}} & {if\;r \in D^{*} } \\ {D_{{}} (r) \cap D^{*} } & {if\;r \notin D^{*} } \\ \end{array} } \right\}\):

: Set of efficient benchmarks of OU r.

\(D_{{}}^{ - - 1} (r) = \{ f:f \in D^{ - 1} (r) \wedge D_{{}} (f) \cap D^{*} = \left\{ r \right\} \}\):

: Set of OUs dominated by r that have r as their only efficient benchmark.

1.2 Node-level measures

\(d_{r}^{in} = \left| {D_{{}}^{ - 1} (r)} \right|\) :

: In-degree of node r.

\(d_{r}^{out} = \left| {D(r)} \right|\) :

: Out-degree of node r.

\(s_{r}^{in} = \sum\limits_{{f \in D_{{}}^{ - 1} (r)}}^{{}} {e_{fr} }\) :

: In-strength of node r.

\(s_{r}^{out} = \sum\limits_{j \in D(r)}^{{}} {e_{rj} }\) :

: Out-strength of node r.

\(e_{r}^{\max } = \mathop {\max }\limits_{{j \in D_{{}}^{*} \left( r \right)}} e_{rj}\) :

: Distance of node r to its farthest efficient benchmark.

\(\tau_{r}^{\min } = \mathop {\min }\limits_{{j \in D_{{}}^{*} \left( r \right)}} \;e_{rj}\) :

: Distance of node r to its closest efficient benchmark.

\(\eta_{r} = d_{r}^{out} + d_{r}^{in}\) :

: Specificity of node r.

\(\gamma_{r} = d_{r}^{out} \cdot d_{r}^{in}\) :

: Hub index of node r.

1.3 Node-level measures for efficient nodes

\(\left| {D_{{}}^{ - 1} (j)} \right| = d_{j}^{in}\) :

: Benchmarking count of node\(j \in D^{*}\)

\(\left| {D_{{}}^{ - - 1} (j)} \right|\) :

: Benchmarking necessity of node \(j \in D^{*}\)

\(\kappa_{j} = \sum\limits_{{r \in D_{{}}^{ - 1} (j)}} {e_{rj} }\) :

: Benchmarking potential of node \(j \in D^{*}\)

\(\sigma_{j} = \mathop {\max }\limits_{{r \in D_{{}}^{ - 1} (j)}} \;e_{rj}\) :

: inefficiency radius of node \(j \in D^{*}\)

\(\varphi_{j} = \left| {\left\{ {r:D(r) = \left\{ j \right\}} \right\}} \right|\) :

: superefficiency index of node\(j \in D^{*}\)

.

1.4 Network-level measures

\(d_{{}}^{aver} = \frac{1}{\left| D \right|}\sum\limits_{r \in D}^{{}} {d_{r}^{in} } = \frac{1}{\left| D \right|}\sum\limits_{r \in D}^{{}} {d_{r}^{out} }\) :

: Average degree.

\(\rho = \frac{{d^{aver} }}{\left| D \right| - 1}\) :

: Network density.

\(\Delta = \mathop {\max }\limits_{(r,j) \in E} \;e_{rj}\) :

: Network diameter.

\(\hat{\pi } = \frac{{\left| {D_{{}}^{*} } \right|}}{\left| D \right|}\) :

: Percentage of efficient nodes.

\(\theta^{aver} = \frac{1}{\left| D \right|}\sum\limits_{r \in D} {e_{r}^{\max } }\) :

: Average inefficiency score.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calzada-Infante, L., Lozano, S. Computing multiperiod efficiency using dominance networks. Ann Oper Res 309, 37–57 (2022). https://doi.org/10.1007/s10479-021-04421-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04421-5

Keywords

Navigation