Skip to main content
Log in

RETRACTED ARTICLE: Understanding the Small Object Argument

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

A Related Article was published on 04 April 2008

Abstract

The small object argument is a transfinite construction which, starting from a set of maps in a category, generates a weak factorisation system on that category. As useful as it is, the small object argument has some problematic aspects: it possesses no universal property; it does not converge; and it does not seem to be related to other transfinite constructions occurring in categorical algebra. In this paper, we give an “algebraic” refinement of the small object argument, cast in terms of Grandis and Tholen’s natural weak factorisation systems, which rectifies each of these three deficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Herrlich, H., Rosický, J., Tholen, W.: On a generalized small-object argument for the injective subcategory problem. Cah. Topol. Géom. Différ. Catég. 43(2), 83–106 (2002)

    MATH  Google Scholar 

  2. Appelgate, H., Tierney, M.: Categories with models. In: Seminar on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), pp. 156–244. Springer, Berlin (1969)

    Chapter  Google Scholar 

  3. Balteanu, C., Fiedorowicz, Z., Schwänzl, R., Vogt, R.: Iterated monoidal categories. Adv. Math. 176(2), 277–349 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck, J.: Distributive laws. In: Seminar on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), pp. 119–140. Springer, Berlin (1969)

    Chapter  Google Scholar 

  5. Blackwell, R., Kelly, G.M., Power, A.J.: Two-dimensional monad theory. J. Pure Appl. Algebra 59(1), 1–41 (July 1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bousfield, A.K.: Constructions of factorization systems in categories. J. Pure Appl. Algebra 9(2–3), 207–220 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dubuc, E.J.: Kan Extensions in Enriched Category Theory. Lecture Notes in Mathematics, vol. 145. Springer-Verlag, Berlin (1970)

    Google Scholar 

  8. Forcey, S.: Enrichment over iterated monoidal categories. Algebr. Geom. Topol. 4, 95–119 (2004) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  9. Freyd, P.J., Kelly, G.M.: Categories of continuous functors. I. J. Pure Appl. Algebra 2, 169–191 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gabriel, P., Ulmer, F.: Lokal präsentierbare Kategorien. Lecture Notes in Mathematics, vol. 221. Springer-Verlag, Berlin (1971)

    Google Scholar 

  11. Garner, R., Gurski, N.: The low-dimensional structures that tricategories form. arXiv preprint 0711.1761

  12. Gordon, R., Power, A.J., Street, R.: Coherence for tricategories. Mem. Amer. Math. Soc. 117(558) (1995)

    MathSciNet  Google Scholar 

  13. Grandis, M., Tholen, W.: Natural weak factorisation systems. Arch. Math. 42, 397–408 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Gurski, N.: An algebraic theory of tricategories. Ph.D. thesis, University of Chicago (2006)

  15. Hovey, M.: Model Categories, Volume 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1999)

  16. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102(1), 20–78 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kelly, G.M.: A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on. Bull. Austral. Math. Soc. 22(1), 1–83 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lack, S.: A Quillen model structure for 2-categories. K-Theory 26(2), 171–205 (June 2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lamarche, F.: Exploring the gap between linear and classical logic. Theory Appl. Categ. 18(17), 473–535 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Quillen, D.G.: Homotopical Algebra. Lecture Notes in Mathematics, no. 43. Springer-Verlag, Berlin (1967)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Garner.

Additional information

This article has been retracted because it is a duplicate of the article published in June 2009, Volume 17, Issue 3, pp 247-285, DOI http://dx.doi.org/10.1007/s10485-008-9137-4.

The retraction note to this article can be found online at http://dx.doi.org/10.1007/s10485-013-9319-6.

Supported by a Research Fellowship of St John’s College, Cambridge and a Marie Curie Intra-European Fellowship, Project No. 040802.

About this article

Cite this article

Garner, R. RETRACTED ARTICLE: Understanding the Small Object Argument. Appl Categor Struct 20, 103–141 (2012). https://doi.org/10.1007/s10485-008-9126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-008-9126-7

Keywords

Mathematics Subject Classifications (2000)

Navigation