Skip to main content
Log in

The Homology of Partial Monoid Actions and Petri Nets

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

The aim of this paper is to study the homology theory of partial monoid actions and apply it to computing the homology groups of mathematical models for concurrency. We study the Baues–Wirsching homology groups of a small category associated with a partial monoid action on a set. We prove that these groups can be reduced to the Leech homology groups of the monoid. For a trace monoid with a partial action on a set, we build a complex of free Abelian groups for computing the homology groups of this small category. It allows us to solve the problem posed by the author on the construction of an algorithm to computing the homology groups of elementary Petri nets. We describe the algorithm and give examples of computing the homology groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Husainov, A.A.: On the homology of small categories and asynchronous transition systems. Homol. Homot. Appl. 6(1), 439–471 (2004). http://www.rmi.acnet.ge/hha

    MathSciNet  MATH  Google Scholar 

  2. Khusainov, A.A.: Cubical homology and the Leech dimension of free partially commutative monoids. Sb. Math. 199(12), 1859–1884 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Husainov, A.A.: The global dimension of a trace monoid ring. Semigroup Forum 82(2), 261–270 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Winskel, G., Nielsen, M.: Models for concurrency. In: Handbook of Logic in Computer Science, vol.4, pp. 1–148. Oxford University Press, Oxford (1995)

    Google Scholar 

  5. Husainov, A.A.: On the Leech dimension of a free partially commutative monoid. Tbilisi Math. J. 1(1), 71–87 (2008). http://tcms.org.ge/Journals/TMJ/

    MathSciNet  MATH  Google Scholar 

  6. Khusainov, A.A., Lopatkin, V.E., Treshchev, I.A.: Studying a mathematical model of parallel computation by algebraic topology methods. J. Appl. Ind. Math. 3(3), 353–363 (2009)

    Article  MathSciNet  Google Scholar 

  7. Haucourt, E.: A framework for component categories. Electron. Notes Theor. Comput. Sci. 230, 39–69 (2009). http://www.elsevier.com/locate/entcs

    Article  Google Scholar 

  8. Baues, H.-J., Wirsching, G.: Cohomology of small categories. J. Pure Appl. Algebra 38, 187–211 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gabriel, P., Zisman, M.: Calculus of Fractions and Homotopy Theory. Springer, Berlin (1967)

    Book  MATH  Google Scholar 

  10. Mac Lane, S.: Categories for the working mathematician. In: Graduate Texts in Mathematics, vol. 5. Springer, New York (1998)

    Google Scholar 

  11. Khusainov, A.A.: Homology groups of semicubical sets. Sib. Math. J. 49(1), 180–190 (2008)

    Article  MathSciNet  Google Scholar 

  12. Diekert, V., Métivier, Y.: Partial commutation and traces. In: Handbook of Formal Languages, vol. 3, pp. 457–533. Springer, New York (1997)

    Chapter  Google Scholar 

  13. Quillen, D.: Higher algebraic K-theory, I. In: Lecture Notes in Math., vol. 341, pp. 85–147. Springer, Berlin (1973)

    Google Scholar 

  14. Khusainov, A.A.: Comparing dimensions of a small category. Sib. Math. J. 38(6), 1230–1240 (1997)

    Article  MathSciNet  Google Scholar 

  15. Goubault, E., Jensen, T.P.: Homology of higher dimensional automata. In: Lecture Notes in Computer Science, vol. 630, pp. 254–268. Springer, Berlin (1992)

    Google Scholar 

  16. Goubault, E.: The geometry of concurrency. Ph.D. Thesis, Ecole Normale Supérieure, 349 pp. (1995). http://www.dmi.ens.fr/~goubault

  17. Gaucher, P.: Homological properties of non-deterministic branchings and mergerings in higher dimensional automata. Homol. Homot. Appl. 7(1), 51–76 (2005). http://www.rmi.acnet.ge/hha

    MathSciNet  MATH  Google Scholar 

  18. Dumas, J.-G., Saunders, B.D., Villard, G.: On efficient sparse integer matrix Smith normal form computations. J. Symb. Comput. 32(1–2), 71–99 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dumas, J.-G., Elbaz-Vincent, P., Giorgi, P., Urbánska, A.: Parallel computation of the rank of large sparse matrices from algebraic K-theory. In: Parallel Symbolic Computation ’07, PASCO 2007, July 2007, Waterloo University, Ontario, Canada, France, pp. 43–52. ACM, New York (2007)

    Google Scholar 

  20. Mazurkiewicz, A.: Trace theory. Advances in Petri nets 1986. In: Lecture Notes in Computer Science, vol. 255, pp. 278–324. Springer, Berlin (1987)

    Google Scholar 

  21. Milner, R.: Communication and concurrency. In: International Series in Computer Science. Prentice Hall, New York (1989)

    Google Scholar 

  22. Nielsen, M., Winskel, G.: Petri nets and bisimulation. Theor. Comp. Sci. 153(1–2), 211–244 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fahrenberg, U.: A category of higher-dimensional automata. Foundations of software science and computational structures. In: Lecture Notes in Computer Science, vol. 3441, pp. 187–201. Springer, Berlin (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet A. Husainov.

Additional information

This work was performed as a part of the Strategic Development Program at the National Educational Institutions of the Higher Education, N 2011-PR-054. The paper was partially supported by the Scientific-Educational Center of Supercomputer Technology in the Far East Federal Region, under contract 2205/1-2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Husainov, A.A. The Homology of Partial Monoid Actions and Petri Nets. Appl Categor Struct 21, 587–615 (2013). https://doi.org/10.1007/s10485-012-9280-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-012-9280-9

Keywords

Mathematics Subject Classifications (2010)

Navigation