Skip to main content

Advertisement

Log in

Friction coefficient estimation in servo systems using neural dynamic programming inspired particle swarm search

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Parameter estimation of static friction torques in servo control systems is of great significance to their robust control. Many researchers are devoted to pursuing the solutions to estimating the coefficients of the static friction torques. In order to tackle the troublesome matter more effectively, in this paper, we address a neural dynamic programming inspired particle swarm search algorithm. We call the algorithm direct BP neural dynamic programming inspired PSO (NDPSO) since we incorporate direct back propagation (BP) and neural dynamic programming (NDP) into particle swarm optimization (PSO). In NDPSO, critic BP neural network is trained to balance the Bellman equation while action BP neural network is used to train the inertia weight, the cognitive coefficient, and the social coefficient of the PSO algorithm. The training target is to enable the critic BP neural network output to approach the ultimately successful objective. Successively, NDPSO, together with standard PSO (SPSO) and genetic algorithm (GA), is applied to the parameter identification of the static friction torque in a servo control system with single input and single output (SISO). The experimental results clearly demonstrate that NDPSO is effective and outperforms SPSO and GA in identifying the parameters of the static friction torque in the servo control system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acharjee P, Goswami SK (2010) Chaotic particle swarm optimization based robust load flow. Int J Elec Power 32(2):141–146

    Article  Google Scholar 

  2. Bertsekas DP, Tsitsiklis JN (1995) Neuro-dynamic programming: an overview. In: Proceedings of the 34th IEEE Conference on Decision and Control, pp. 560–564

  3. Boutilier C, Dearden R, Goldszmidt M (2000) Stochastic dynamic programming with factored representations. Artif Intell 121(1-2):49–107

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen M-R, Li X, Zhang X, Lu Y-Z (2010) A novel particle swarm optimizer hybridized with extremal optimization. Appl Soft Comput 10(2):367–373

    Article  Google Scholar 

  5. Coelho LDS (2010) Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst Appl 37(2):1676–683

    Article  Google Scholar 

  6. Das MT, Dulger LC (2009) Signature verification (SV) toolbox: application of PSO-NN. Eng Appl Artif Intel 9(1):308–320

    Google Scholar 

  7. Garrido R, Concha A (2013) An algebraic recursive method for parameter identification of a servo model. IEEE/ASME T Mech 18(5):1572–1580

    Article  Google Scholar 

  8. Garrido R, Concha A (2014) Inertia and friction estimation of a velocity-controlled servo using position measurements. IEEE T Ind Electron 61(9):4759–4770

    Article  Google Scholar 

  9. Han SI, Lee JM (2012) Adaptive dynamic surface control with sliding mode control and RWNN for robust positioning of a linear motion stage. Mechatronics 22(2):222–238

    Article  Google Scholar 

  10. Hera PML (2012) Modeling dynamics of an electro-hydraulic servo actuated manipulator. A case study of a forestry forwarder crane. In: The IEEE World Automation Congress, pp 1–6

  11. Kim S-J, Kim S-Y, Ha I-J (2004) An efficient identification method for Friction in single-DOF motion control systems. IEEE T Contr Syst Tech 12(4):555–563

    Article  Google Scholar 

  12. Li B, Yan J, Guo G, Wang H, Zhang M (2012) Identification of dynamic parameters and friction coefficients for a heavy-duty hydraulic manipulator. In: Proceedings of the 10th World Congress on Intelligent Control and Automation, pp 3102–3106

  13. Liu Y-J, Chen CLP, Wen G-X (2011) Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE T Neural Networ 22(7):1162– 1167

    Article  Google Scholar 

  14. Liu Y-J, Tang L, Tong S, Chen CLP (in press) Adaptive NN controller design for a class of nonlinear MIMO discrete-time systems

  15. Lu Y, Levy D, Zhang J, Li D (2011) An evolutionary performance enhanced PSO approach by using a BP neural-learning-based PID controller. Connect Sci 23(1):45–63

    Article  Google Scholar 

  16. Marton L, Fodor S, Sepehri N (2011) A practical method for friction identification in hydraulic actuators. Mechatronics 21(1):350–356

    Article  Google Scholar 

  17. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization: an overview. Swarm Intell 1(1):33–57

    Article  Google Scholar 

  18. Ruderman M (2013) Discrete-time series identification of sliding dynamic friction in industrial robotic joints. In:2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 5809–5814

  19. Si J, Barto A, Powell W, Wunsch D (2004) Handbook of learning and approximate dynamic programming IEEE-Wiley Press

  20. Song X, Liu H, Bimbo J, Althoefer K, Seneviratne LD (2012) Object surface classificaiton based on friction properties for intelligent robotic hands. In: The IEEE World Automation Congress, pp 1–5

  21. Srang S, Yamakita M (2013) Estimation of discontinuous friction using continuous-discrete unscented Kalman filter for adaptive compensation. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp 429–435

  22. Vakil M, Fotouhi R, Nikiforuk PN (2011) Energy-based approach for friction identification of robotic joints. Mechatronics 21(3):614–624

    Article  Google Scholar 

  23. Wang YF, Wang DH, Chai TY (2009) Modeling and control compensation of nonlinear friction using adaptive fuzzy systems. Mech Syst Signal Pr 23(8):2445–2457

    Article  Google Scholar 

  24. Wang Y-X, Xiang Q-L, Zhao Z-D (2010) Particle swarm optimizer with adaptive tabu and mutation A unified framework for efficient mutation operators. ACM T Auton Adap Sys 5(1):1556–1565

    Google Scholar 

  25. Yang C, Ge SS, Xiang C, Chai T, Lee TH (2008) Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach. IEEE T Neural Networ 19(11):1873–1886

    Article  Google Scholar 

  26. Yao J, Jiao Z, Yao B (2012) Robust control for static loading of electro-hydraulic load simulator with friction compensation. Chinese J Aeronaut 25(6):954–962

    Article  Google Scholar 

  27. Yoon JY, Trumper DL (2014) Friction modeling, identification, and compensation based on friction hysteresis and Dahl resonance. Mechatronics 24(6):734–741

    Article  Google Scholar 

  28. Zhang H, Luo Y, Liu D (2009) Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints. IEEE T Neural Networ 20(9):1490–1503

    Article  Google Scholar 

  29. Zhang J, Chen S, Levy D, Lu Y (2011) Feedback loop mechanisms based particle swarm optimization with neighborhood topology. In: IEEE Congress on Evolutionary Computation, pp 1864–1871

  30. Zhan Z-H, Zhang J, Li Y, Chung HSH (2009) Adaptive particle swarm optimization. IEEE T Syst man Cy B 39(6):1362–1381

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities, HUST: 2014AA027. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danping Yan.

Appendices

Appendix A: Derivation of the adaptive rule of the critic neural network

$$\begin{array}{@{}rcl@{}} {\Delta} w_{c_{i}}^{(2)}&=&l_{c}(t)\cdot [-\frac{\partial E_{c}(t)}{\partial w_{c_{i}}^{(2)}}]\\ &=&-l_{c}(t)\cdot \frac{\partial E_{c}(t)}{\partial J(t)}\cdot \frac{\partial J(t)}{\partial w_{c_{i}}^{(2)}}\\ &=&-l_{c}(t)\cdot \beta\cdot e_{c}(t)\cdot p_{i}(t) \end{array} $$
(33)
$$ \begin{array}{lll} {\Delta} w_{c_{ij}}^{(1)}\!\!\!&=&\!l_{c}(t)\cdot [-\frac{\partial E_{c}(t)}{\partial w_{c_{ij}}^{(1)}}] \\ &=&\!-l_{c}(t)\cdot \frac{\partial E_{c}(t)}{\partial J(t)}\cdot \frac{\partial J(t)}{\partial p_{i}(t)}\cdot \frac{\partial p_{i}(t)}{\partial q_{i}(t)}\cdot \frac{\partial q_{i}(t)}{\partial w_{c_{ij}}^{(1)}} \\ &=&\!-l_{c}(t)\!\cdot\!\beta\!\cdot\! e_{c}(t)\!\cdot\! {w_{c_{i}}^{(2)}\!\cdot\! [\frac{1}{2}\!\cdot\! (1\,-\,{p_{i}^{2}}(t))]}\!\cdot\! x_{j}(t) \end{array} $$
(34)

Appendix B: Derivation of the updated rule of the action neural network

$$\begin{array}{@{}rcl@{}} {\Delta} w_{a_{i}}^{(2)}\!\!&=\!&l_{a}(t)\cdot [-\frac{\partial E_{a}(t)}{\partial w_{a_{i}}^{(2)}}]\\ &=\!&-l_{a}(t)\cdot \frac{\partial E_{a}(t)}{\partial J(t)}\cdot \frac{\partial J(t)}{\partial X_{k}(t)}\cdot \frac{\partial X_{k}(t)}{\partial w_{a_{i}}^{(2)}}\\ &=\!&-l_{a}(t)\!\cdot\! e_{a}(t)\!\cdot\!\! \sum\limits_{j=1}^{N_{ch}}\{{w_{c_{i}}^{(2)}(t)\!\cdot\! [\frac{1}{2}\!\cdot\! (1\,-\,\!{p_{i}^{2}}(t))]\!\cdot\! w_{c_{ij}}^{(1)}(t)}\}\\ &&\cdot [\frac{1}{2}\cdot (1-x_{k}(t))] \cdot g_{i}(t) \end{array} $$
(35)
$$ \begin{array}{ll} {\Delta} w_{a_{ij}}^{(1)}\!\!&=l_{a}(t)\cdot [-\frac{\partial E_{a}(t)}{\partial w_{a_{ij}}^{(1)}}] \\ &=-l_{a}(t)\!\cdot\! \frac{\partial E_{a}(t)}{\partial J(t)}\!\cdot\! \frac{\partial J(t)}{\partial X_{k}(t)}\!\cdot\! \frac{\partial X_{k}(t)}{\partial g_{i}(t)}\!\cdot\! \frac{\partial g_{i}(t)}{\partial h_{i}(t)}\!\cdot\! \frac{\partial h_{i}(t)}{\partial w_{a_{ij}}^{(1)}} \\ &=-l_{a}(t)\!\cdot\! e_{a}(t)\!\cdot\!\! {\sum}_{j=1}^{N_{ch}}\{{w_{c_{i}}^{(2)}(t)\!\cdot\! [\frac{1}{2}\!\cdot\! (1\!\,-\,\!{p_{i}^{2}}(t))]\!\cdot\! w_{c_{ij}}^{(1)}\!(t)\!}\}\\ &{\kern7pt} \cdot [\frac{1}{2}\cdot (1\,-\,x_{k}(t))]\cdot w_{a_{ki}}^{(2)}(t)\cdot [\frac{1}{2}\cdot (1-{g_{i}^{2}}(t))]\cdot x_{j}(t) \end{array} $$
(36)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Yan, D. & Levy, D. Friction coefficient estimation in servo systems using neural dynamic programming inspired particle swarm search. Appl Intell 43, 1–14 (2015). https://doi.org/10.1007/s10489-014-0621-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-014-0621-2

Keywords

Navigation