Skip to main content
Log in

An effective synchronization clustering algorithm

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper presents an Effective Synchronization Clustering (ESynC) algorithm using a linear version of Vicsek model. The development of ESynC algorithm is inspired by Synchronization Clustering (SynC) algorithm and Vicsek model. After some analysis and experimental comparison, we observe that ESynC algorithm based on the linear version of Vicsek model can get better local synchronization effect than SynC algorithm based on an extensive Kuramoto model and a similar synchronization clustering algorithm based on the original version of Vicsek model. By some simulated experiments of some artificial data sets, eight UCI data sets, and three picture data sets, we observe that ESynC algorithm not only gets better local synchronization effect but also needs less iterative times and time cost than SynC algorithm. We also introduce an Improved ESynC algorithm (IESynC algorithm) in time cost by combining multidimensional grid partitioning method and Red-Black tree structure. By some simulated experiments, we observe that IESynC algorithm can get some improvement of time cost than ESynC algorithm in some data sets. Extensive comparison experiments with some class clustering algorithms demonstrate that our two algorithms can often get acceptable clustering results in many cases. At last, it gives several solid and insightful future research suggestions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agrawal R, Gehrke J, Gunopolos D et al (1998) Automatic subspace clustering of high dimensional data for data mining application. In: Proceedings of ACM SIGMOD, pp 94–105

  2. Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) OPTICS: Ordering points to identify the clustering structure. In: Proceedings of ACM SIGMOD, pp 49–60

  3. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York

    Book  MATH  Google Scholar 

  4. Böhm C, Plant C, Shao J, et al. (2010) Clustering by synchronization. In: Proceedings of ACM SIGKDD. USA, Washington, pp 583–592

  5. Chen X (2013) Clustering based on a near neighbor graph and a grid cell graph. J Intell Inf Syst 40(3):529–554

    Article  MathSciNet  Google Scholar 

  6. Chen X (2014) A fast synchronization clustering algorithm. arXiv:1407.7449 [cs.LG].

  7. Chen X (2015) A new clustering algorithm based on near neighbor influence. Expert Syst Appl 42(21):7746–7758

    Article  Google Scholar 

  8. Chen Z, Zhang HT, Chen X, Chen D, Zhou T (2015) Two-level leader-follower organization in pigeon flocks. Eur phys Lett 112(2):20008

    Article  Google Scholar 

  9. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE T Pattern Anal 24(5):603–619

    Article  Google Scholar 

  10. Czirok A, Barabasi AL, Vicsek T (1999) Collective motion of self-propelled particles: kinetic phase transition in one dimension. Phys Rev Lett 82:209–212

    Article  Google Scholar 

  11. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial data sets with noise. In: Proceedings of the 2-th International Conference on Knowledge Discovery and Data Mining, pp 226–231

  12. Frank A (2010) Asuncion a. UCI Machine Learning Repository Irvine, University of California

    Google Scholar 

  13. Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(1):972–976

    Article  MathSciNet  MATH  Google Scholar 

  14. Fukunaga K, Hostetler L (1975) The estimation of the gradient of a density function, with applications in pattern recognition. IEEE T Inform Theory 21(1):32–40

    Article  MathSciNet  MATH  Google Scholar 

  15. Gräunwald P (2005) A tutorial introduction to the minimum description length principle. MIT Press, Cambridge

    Google Scholar 

  16. Guha S, Rastogi R, Shim K (2001) Cure: an efficient clustering algorithm for large databases. Inform Syst 26(1):35–58

    Article  MATH  Google Scholar 

  17. Horn D, Gottlieb A (2002) Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Phys Rev Lett 88(1):018702

    Article  Google Scholar 

  18. Huang JB, Kang JM, Qi JJ, Sun HL (2013) A hierarchical clustering method based on a dynamic synchronization model. Sci China Ser F: Inform Sci 43:599–610

    Google Scholar 

  19. Jadbabaie A, Lin J, Morse AS (2003) Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE T Automat Contr 48(6):998–1001

    Article  MathSciNet  Google Scholar 

  20. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

    Article  Google Scholar 

  21. Jaromczyk JW, Godfried T (1992) Relative neighborhood graphs and their relatives. In: Proceedings of the IEEE, vol 80, pp 1502–1517

  22. Ji P, Peron TK, Menck PJ, Rodrigues FA, Kurths J (2013) Cluster explosive synchronization in complex networks. Phys Rev Lett 110(21):218701

    Article  Google Scholar 

  23. Karypis G, Han EH, Kumar V (1999) CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. IEEE Comput 32(8):68–75

    Article  Google Scholar 

  24. Leyva I, Navas A, Sendiña-Nadal I, et al. (2013) Explosive transitions to synchronization in networks of phase oscillators. Sci Rep-UK 3:1281

    Google Scholar 

  25. Liu Z, Guo L (2008) Connectivity and synchronization of Vicsek model. Sci China Ser F: Inform Sci 51(7):848–858

    Article  MathSciNet  MATH  Google Scholar 

  26. Luxburg UV (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

    Article  MathSciNet  Google Scholar 

  27. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5-th MSP. University of California Press, Berkeley, pp 281–297

  28. Nagy M, Ákos Z, Biro D, Vicsek T (2010) Hierarchical group dynamics in pigeon flocks. Nature 464 (7290):890–893

    Article  Google Scholar 

  29. Reynolds C (1987) Flocks, birds, and schools: a distributed behavioral model. Comput Graph 21:25–34

    Article  Google Scholar 

  30. Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496

    Article  Google Scholar 

  31. Roy S, Bhattacharyya DK (2005) An approach to find embedded clusters using density based techniques. Lect Notes Comput Sc 3816:523–535

    Article  Google Scholar 

  32. Schaeffer SE (2007) Graph clustering. Comput Sci Rev 1(1):27–64

    Article  MATH  Google Scholar 

  33. Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319

    Article  Google Scholar 

  34. Shao J, Böhm C, Yang Q, Plant C (2010) Synchronization based outlier detection. In: Proceedings of the ECML/PKDD, pp 245–260

  35. Shao J, Yang Q, Böhm C, Plant C (2011) Detection of arbitrarily oriented synchronized clusters in high-dimensional data. In: Proceedings of the ICDM, pp 607–616

  36. Shao J, Hahn K, Yang Q et al (2010) Hierarchical density-based clustering of white matter tracts in the human brain. Int J Knowl Disc Bioin 1(4):1–25

    Article  Google Scholar 

  37. Shao J, He X, Plant C, Yang Q, Böhm C (2013) Robust synchronization-based graph clustering. In: Proceedings of the 17-th Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp 249–260

  38. Shao J, He X, Böhm C, Yang Q, Plant C (2013) Synchronization inspired partitioning and hierarchical clustering. IEEE T Knowl Data En 25(4):893–905

    Article  Google Scholar 

  39. Shao J, Ahmadi Z, Kramer S (2014) Prototype-based learning on concept-drifting data streams. In: Proceedings of ACM SIGKDD, pp 412–421

  40. Strehl A, Ghosh J (2002) Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3:583–617

    MathSciNet  MATH  Google Scholar 

  41. Theodoridis S, Koutroumbas k (2006) Pattern recognition. Academic Press

  42. Vicsek T, Czirok A, Ben-Jacob E et al (1995) Novel type of phase transitions in a system of self-driven particles. Phys Rev Lett 75(6):1226–1229

    Article  MathSciNet  Google Scholar 

  43. Vinh NX, Epps J, Bailey J (2010) Information theoretic measures for clusterings comparison: variants, properties, norMalization and correction for chance. J Mach Learn Res 11:2837–2854

    MathSciNet  MATH  Google Scholar 

  44. Wang L, Liu Z (2009) Robust consensus of multi-agent systems with noise. Sci China Ser F: Inform Sci 52 (5):824–834

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang W, Yang J, Muntz R (1997) STING: A statistical information grid approach to spatial data mining. In: Proceedings of VLDB, pp 186–195

  46. Zhang HT, Chen Z, Vicsek T, Feng G, Sun L, Su R, Zhou T (2014) Route-dependent switch between hierarchical and egalitarian strategies in pigeon flocks. Sci Rep-UK 4:5805

    Google Scholar 

  47. Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: An efficient data clustering method for very large databases. In: Proceedings of SIGMOD, pp 103–114

  48. Zou Y, Pereira T, Small M, Liu Z, Kurths J (2014) Basin of attraction determines hysteresis in explosive synchronization. Phys Rev Lett 112(11):114102

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by three projects (cstc2016jcyjA0521, cstc2014jcyjA40035, cstc2016jcyjA0063) from Chongqing Cutting-edge and Applied Foundation Research Program of China and a project (No. 14RC08) from Chongqing Three Gorges University of China. The author thanks the anonymous reviewers and the editors for their useful suggestions which led to the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinquan Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 832 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X. An effective synchronization clustering algorithm. Appl Intell 46, 135–157 (2017). https://doi.org/10.1007/s10489-016-0814-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-016-0814-y

Keywords

Navigation