Skip to main content
Log in

An improved distance-based total uncertainty measure in belief function theory

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Uncertainty quantification of mass functions is a crucial and unsolved issue in belief function theory. Previous studies have mostly considered this problem from the perspective of viewing the belief function theory as an extension of probability theory. Recently, Yang and Han have developed a new distance-based total uncertainty measure directly and totally based on the framework of belief function theory so that there is no switch between the frameworks of belief function theory and probability theory in that measure. However, we have found some obvious deficiencies in Yang and Han’s uncertainty measure which could lead to counter-intuitive results in some cases. In this paper, an improved distance-based total uncertainty measure has been proposed to overcome the limitations of Yang and Han’s uncertainty measure. The proposed measure not only retains the desired properties of original measure, but also possesses higher sensitivity to the change of evidences. A number of examples and applications have verified the effectiveness and rationality of the proposed uncertainty measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abellán J (2011) Combining nonspecificity measures in Dempster–Shafer theory of evidence. Int J Gen Syst 40(6):611–622

    Article  MathSciNet  MATH  Google Scholar 

  2. Abellán J, Masegosa A (2008) Requirements for total uncertainty measures in Dempster–Shafer theory of evidence. Int J Gen Syst 37(6):733–747

    Article  MathSciNet  MATH  Google Scholar 

  3. Dempster AP (1967) Upper and lower probabilities induced by a multivalued mapping. Ann Math Stat 38 (2):325–339

    Article  MathSciNet  MATH  Google Scholar 

  4. Deng X, Hu Y, Deng Y, Mahadevan S (2014a) Environmental impact assessment based on D numbers. Expert Syst Appl 41(2):635–643

    Article  Google Scholar 

  5. Deng X, Hu Y, Deng Y, Mahadevan S (2014b) Supplier selection using AHP methodology extended by D numbers. Expert Syst Appl 41(1):156–167

    Article  Google Scholar 

  6. Deng X, Lu X, Chan FT, Sadiq R, Mahadevan S, Deng Y (2015) D-CFPR: D numbers extended consistent fuzzy preference relations. Knowl-Based Syst 73:61–68

    Article  Google Scholar 

  7. Deng X, Han D, Dezert J, Deng Y, Shyr Y (2016a) Evidence combination from an evolutionary game theory perspective. IEEE Trans Cybern 46(9):2070–2082

    Article  Google Scholar 

  8. Deng X, Liu Q, Deng Y (2016b) Matrix games with payoffs of belief structures. Appl Math Comput 273:868–879

    MathSciNet  Google Scholar 

  9. Deng X, Liu Q, Deng Y, Mahadevan S (2016c) An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Inf Sci 340–341:250–261

    Article  Google Scholar 

  10. Deng Y (2015) Generalized evidence theory. Appl Intell 43(3):530–543

    Article  Google Scholar 

  11. Deng Y (2016) Deng entropy. Chaos, Solitons & Fractals 91:549–553

    Article  Google Scholar 

  12. Deng Y (2017) Fuzzy analytical hierarchy process based on canonical representation on fuzzy numbers. J Comput Anal Appl 22(2):201–228

    Google Scholar 

  13. Dezert J, Tchamova A (2014) On the validity of Dempster’s fusion rule and its interpretation as a generalization of bayesian fusion rule. Int J Intell Syst 29(3):223–252

    Article  Google Scholar 

  14. Dubois D, Prade H (1985) A note on measures of specificity for fuzzy sets. Int J Gen Syst 10(4):279–283

    Article  MathSciNet  MATH  Google Scholar 

  15. Dubois D, Prade HM, Farreny H, Martin-Clouaire R, Testemale C (1988) Possibility Theory: An Approach to Computerized Processing of Uncertainty, vol 2. Plenum Press, New York

  16. Duda RO, Hart PE, Stork DG (2012) Pattern Classification. John Wiley & Sons

  17. Fan G, Zhong D, Yan F, Yue P (2016) A hybrid fuzzy evaluation method for curtain grouting efficiency assessment based on an AHP method extended by D numbers. Expert Syst Appl 44(1):289–303

    Article  Google Scholar 

  18. Ferreira AA, Gonċalves M A, Laender AH (2012) A brief survey of automatic methods for author name disambiguation. Acm Sigmod Record 41(2):15–26

    Article  Google Scholar 

  19. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188

    Article  Google Scholar 

  20. Fu C, Yang JB, Yang SL (2015) A group evidential reasoning approach based on expert reliability. Eur J Oper Res 246(3):886–893

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo J (2016) A risk assessment approach for failure mode and effects analysis based on intuitionistic fuzzy sets and evidence theory. J Intell Fuzzy Syst 30(2):869–881

    Article  Google Scholar 

  22. Han D, Dezert J, Duan Z (2016) Evaluation of probability transformations of belief functions for decision making. IEEE Trans Syst Man Cybern Syst Hum 46(1):93–108

    Article  Google Scholar 

  23. Harmanec D, Klir GJ (1994) Measuring total uncertainty in Dempster-Shafer theory: A novel approach. Int J Gen Syst 22(4):405–419

    Article  MATH  Google Scholar 

  24. Hartley RV (1928) Transmission of information. Bell Syst Tech J 7(3):535–563

    Article  Google Scholar 

  25. Höhle U (1982) Entropy with respect to plausibility measures. In: Proceedings of the 12th IEEE International Symposium on Multiple-Valued Logic, pp 167–169

  26. Jiang W, Wei B, Qin X, Zhan J, Tang Y (2016a) Sensor Data Fusion Based on a New Conflict Measure. Mathematical Problems in Engineering 2016, Article ID 5769061:11 pages. doi:10.1155/2016/5769061

  27. Jiang W, Wei B, Xie C, Zhou D (2016b) An evidential sensor fusion method in fault diagnosis. Adv Mech Eng 8(3):1–7

    Article  Google Scholar 

  28. Jiang W, Wei B, Zhan J, Xie C, Zhou D (2016c) A visibility graph power averaging aggregation operator: A methodology based on network analysis. Comput Ind Eng 101:260–268. doi:10.1016/j.cie.2016.09.009

  29. Jiang W, Xie C, Wei B, Zhou D (2016d) A modified method for risk evaluation in failure modes and effects analysis of aircraft turbine rotor blades. Adv Mech Eng 8(4):1–16

    Article  Google Scholar 

  30. Jiang W, Xie C, Zhuang M, Shou Y, Tang Y (2016e) Sensor data fusion with Z-numbers and its application in fault diagnosis. Sensors 16(9):1509. doi:10.3390/s16091509

  31. Jiang W, Zhan J, Zhou D, Li X (2016f) A method to determine generalized basic probability assignment in the open world. Mathematical Problems in Engineering 2016:Article ID 3878,634

  32. Jousselme AL, Liu C, Grenier D, Bossé É (2006) Measuring ambiguity in the evidence theory. IEEE Trans Syst Man Cybern Syst Hum 36(5):890–903

    Article  Google Scholar 

  33. Karlsson A, Hammarfelt B, Steinhauer HJ, Falkman G, Olson N, Nelhans G, Nolin J (2015) Modeling uncertainty in bibliometrics and information retrieval: an information fusion approach. Scientometrics 102 (3):2255–2274

    Article  Google Scholar 

  34. Klir GJ, Lewis IIIHW (2008) Remarks on measuring ambiguity in the evidence theory. IEEE Trans Syst Man Cybern Syst Hum 38(4):995–999

    Article  Google Scholar 

  35. Klir GJ, Parviz B (1992) A note on the measure of discord. In: Proceedings of the Eighth international conference on Uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc., pp 138–141

  36. Klir GJ, Ramer A (1990) Uncertainty in the dempster-shafer theory: a critical re-examination. Int J Gen Syst 18(2):155–166

    Article  MATH  Google Scholar 

  37. Klir GJ, Smith RM (1999) Recent developments in generalized information theory. Int J Fuzzy Syst 1 (1):1–13

    MathSciNet  Google Scholar 

  38. Klir GJ, Wierman MJ (1999) Uncertainty-based information: elements of generalized information theory, vol 15. Springer Science & Business Media

  39. Liu HC, You JX, Fan XJ, Lin QL (2014a) Failure mode and effects analysis using D numbers and grey relational projection method. Expert Syst Appl 41(10):4670–4679

    Article  Google Scholar 

  40. Liu W, Islamaj Doğan R, Kim S, Comeau DC, Kim W, Yeganova L, Lu Z, Wilbur WJ (2014b) Author name disambiguation for PubMed. J Assoc Inf Sci Technol 65(4):765–781

    Article  Google Scholar 

  41. Liu Zg, Pan Q, Dezert J, Mercier G (2015) Credal c-means clustering method based on belief functions. Knowl.-Based Syst 74:119–132

    Article  Google Scholar 

  42. Zg Liu, Pan Q, Dezert J, Martin A (2016) Adaptive imputation of missing values for incomplete pattern classification. Pattern Recogn 52:85–95

    Article  Google Scholar 

  43. Ma J, Liu W, Miller P, Zhou H (2016) An evidential fusion approach for gender profiling. Inf Sci 333:10–20

    Article  Google Scholar 

  44. Maluf DA (1997) Monotonicity of entropy computations in belief functions. Intell Data Anal 1(3):207–213

    Article  Google Scholar 

  45. Mardani A, Jusoh A, Zavadskas EK (2015) Fuzzy multiple criteria decision-making techniques and applications - two decades review from 1994 to 2014. Expert Syst Appl 42(8):4126–4148

    Article  Google Scholar 

  46. Masson MH, Denoeux T (2008) ECM: An evidential version of the fuzzy c-means algorithm. Pattern Recogn 41(4):1384–1397

    Article  MATH  Google Scholar 

  47. Merigó J M, Casanovas M (2009) Induced aggregation operators in decision making with the Dempster-Shafer belief structure. Int J Intell Syst 24(8):934–954

    Article  MATH  Google Scholar 

  48. Ning X, Yuan J, Yue X, Ramirez-Serrano A (2014) Induced generalized Choquet aggregating operators with linguistic information and their application to multiple attribute decision making based on the intelligent computing. J Intell Fuzzy Syst 27(3):1077– 1085

    MathSciNet  MATH  Google Scholar 

  49. Ning X, Yuan J, Yue X (2016a) Uncertainty-based optimization algorithms in designing fractionated spacecraft. Sci Rep 6:22,979

    Article  Google Scholar 

  50. Ning X, Zhang T, Wu Y, Zhang P, Zhang J, Li S, Yue X, Yuan J (2016b) Coordinated parameter identification technique for the inertial parameters of non-cooperative target. PloS one 11(4):e0153,604

    Article  Google Scholar 

  51. Pawlak Z (1982) Rough sets. Int J Comput Inform Sci 11(5):341–356

    Article  MATH  Google Scholar 

  52. Pearl J (1990) Reasoning with belief functions: an analysis of compatibility. Int J Approx Reason 4(5-6):363–389

    Article  MathSciNet  MATH  Google Scholar 

  53. Sabahi F, Akbarzadeh-T MR (2013) A qualified description of extended fuzzy logic. Inf Sci 244:60–74

    Article  MathSciNet  MATH  Google Scholar 

  54. Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton

    MATH  Google Scholar 

  55. Shannon CE (2001) A mathematical theory of communication. ACM SIGMOBILE Mobile Comput Commun Rev 5(1):3–55

    Article  MathSciNet  Google Scholar 

  56. Smalheiser NR, Torvik VI (2009) Author name disambiguation. Annual Rev Inf Sci Technol 43(1):1–43

    Article  Google Scholar 

  57. Steinhauer HJ, Karlsson A, Andler SF (2013) Traceable uncertainty. In: The 16th international conference on information fusion, (FUSION), IEEE, pp 1582–1589

  58. Yager RR (1983) Entropy and specificity in a mathematical theory of evidence. Int J Gen Syst 9(4):249–260

    Article  MathSciNet  MATH  Google Scholar 

  59. Yang Y, Han D (2016) A new distance-based total uncertainty measure in the theory of belief functions. Knowl-Based Syst 94:114–123

    Article  Google Scholar 

  60. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to anonymous reviewers for their useful comments and suggestions on improving this paper. The work is supported by National Natural Science Foundation of China (Grant Nos. 61174022, 61573290, 61503237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Deng.

Appendix

Appendix

Proof of Property 1 Given a BPA m over the FOD Θ, let the belief interval of element 𝜃 i in Θ be [Bel(𝜃 i ),Pl(𝜃 i )]. Since \(0 \le {d_{E}^{I}} \left ({[Bel(\theta _{i}), Pl(\theta _{i})],[0 ,1 ]} \right ) \le 1\), in (21) the upper bound of iTU I(m), which is n, is obtained when \({d_{E}^{I}} \left ({[Bel(\theta _{i}), Pl(\theta _{i})],[0 ,1 ]} \right ) = 0\), ∀𝜃 i ∈Θ. The condition \({d_{E}^{I}} \left ({[Bel(\theta _{i}), Pl(\theta _{i})],[0 ,1 ]} \right ) = 0\), ∀𝜃 i ∈Θ, can uniquely be satisfied in the vacuous BPA m(Θ)=1.

Similarly, the lower bound of iTU I(m), which is 0, is obtained when \({d_{E}^{I}} \left ({[Bel(\theta _{i}), Pl(\theta _{i})],[0 ,1 ]} \right ) = 1\), ∀𝜃 i ∈Θ, which corresponds to [Bel(𝜃 i ),Pl(𝜃 i )]=[0,0] or [Bel(𝜃 i ),Pl(𝜃 i )]=[1,1]. It is easily known that the condition of iTU I getting its lower bound is associated with a BPA m(𝜃 i )=1 and m(A)=0 ∀A𝜃 i ,A⊆Θ.

For each 𝜃 i ∈Ω, assume the belief interval is [Bel(𝜃 i ),Pl(𝜃 i )]. Since BPA m is initially defined on Θ, we have [Bel(𝜃 i ),Pl(𝜃 i )]=[0,0] if 𝜃 i ∈Φ and 𝜃 i ∉Θ. Therefore,

$$\begin{array}{@{}rcl@{}} iTU_{\Omega}^{I} (m) &=& \sum\limits_{\theta_{i} \in {\Theta} } {\left[ {1 - {d_{E}^{I}} ([Bel(\theta_{i} ),Pl(\theta_{i} )],[0,1])} \right]}\\ &&+ \sum\limits_{\theta_{i} \notin {\Theta} ,\theta_{i} \in {\Phi} } {\left[ {1 - {d_{E}^{I}} ([0,0],[0,1])} \right]} \\ &=& \sum\limits_{\theta_{i} \in {\Theta} } {\left[ {1 - {d_{E}^{I}} ([Bel(\theta_{i} ),Pl(\theta_{i} )],[0,1])} \right]}\\ &&+ \sum\limits_{\theta_{i} \notin {\Theta} ,\theta_{i} \in {\Phi} } 0 \\ &=& \sum\limits_{\theta_{i} \in {\Theta} } {\left[ {1 - {d_{E}^{I}} ([Bel(\theta_{i} ),Pl(\theta_{i} )],[0,1])} \right]} \\ &=& iTU_{\Theta}^{I} (m) \\ \end{array} $$

Since \(\forall A \subseteq {\Theta } :[Bel_{m_{1} } (A),Pl_{m_{1} } (A)] \subseteq [Bel_{m_{2} } (A),Pl_{m_{2} } (A)]\) , there exists \(\forall \theta _{i} \in {\Theta } :[Bel_{m_{1} } (\theta _{i}),Pl_{m_{1} } (\theta _{i})] \subseteq [Bel_{m_{2} } (\theta _{i}),Pl_{m_{2} } (\theta _{i})]\) . Then, we have \({d_{E}^{I}} \left ({[Bel_{m_{1} } (\theta _{i} ),Pl_{m_{1} } (\theta _{i} )],[0,1]} \right ) \ge {d_{E}^{I}} \left ({[Bel_{m_{2} } (\theta _{i} ),Pl_{m_{2} } (\theta _{i} )],[0,1]} \right )\), ∀𝜃 i ∈Θ. Therefore, according to (21), iTU I(m 1)≤iTU I(m 2).

Let us first prove property 4.1.

In a bayesian BPA, since m(A)=0, ∀|A|≠1, we have m(𝜃 i ) = Bel(𝜃 i ) = Pl(𝜃 i ), ∀𝜃 i ∈Θ. Assume m(𝜃 i ) = Bel(𝜃 i ) = Pl(𝜃 i ) = x i for 𝜃 i , so \(\sum \limits _{i = 1}^{n} {x_{i} } = 1\), and

$$\begin{array}{@{}rcl@{}} {d_{E}^{I}} \left( {[Bel(\theta_{i} ),Pl(\theta_{i} )],[0,1]} \right) &=& \sqrt {\left( {x_{i} - 0} \right)^{2} + \left( {x_{i} - 1} \right)^{2} }\\ &=& \sqrt {2{x_{i}^{2}} - 2x_{i} + 1}. \end{array} $$

Then

$$iTU^{I} (m) = \sum\limits_{i = 1}^{n} {\left( {1 - \sqrt {2{x_{i}^{2}} - 2x_{i} + 1} } \right)}. $$

Therefore, we have the following Lagrangian function

$$L(m) = \sum\limits_{i = 1}^{n} {\left( {1 - \sqrt {2{x_{i}^{2}} - 2x_{i} + 1} } \right)} + \lambda \left( {\sum\limits_{i = 1}^{n} {x_{i} } - 1} \right) $$

where λ is the Lagrangian constant. By calculating the derivatives, we obtain

$$\left\{ \begin{array}{l} \frac{{\partial L(m)}}{{\partial x_{i} }} = \frac{{1 - 2x_{i}}}{{\sqrt {2{x_{i}^{2}} - 2x_{i} + 1} }} + \lambda \\ \frac{{\partial L(m)}}{{\partial \lambda }} = \sum\limits_{i = 1}^{n} {x_{i} } - 1 \\ \end{array} \right. $$

Then, by equaling these two functions to 0, we have

$$\left\{ \begin{array}{l} x_{i} = \frac{1}{2}\left( {1 \pm \sqrt {\frac{{\lambda^{2} }}{{2 - \lambda^{2} }}} } \right) \\ \sum\limits_{i = 1}^{n} {x_{i} } = 1 \\ \end{array} \right. $$

At the same time, since each maximum value satisfies

$$\frac{{1 - 2x_{i} }}{{\sqrt {2{x_{i}^{2}} - 2x_{i} + 1} }} + \lambda = 0,\quad \forall i \in \{ 1, {\cdots} ,n\} $$

we have

$$\frac{{1 + \lambda \sqrt {2{x_{i}^{2}} - 2x_{i} + 1} }}{2} = x_{i},\quad \forall i. $$

Hence

$$\sum\limits_{i = 1}^{n} {\frac{{1 + \lambda \sqrt {2{x_{i}^{2}} - 2x_{i} + 1} }}{2}} = \sum\limits_{i = 1}^{n} {x_{i} } = 1, $$

namely,

$$\frac{n}{2} + \frac{\lambda }{2}\sum\limits_{i = 1}^{n} {\sqrt {2{x_{i}^{2}} - 2x_{i} + 1} } = 1. $$

When n≥2, we have λ≤0. Therefore,

$$\frac{{1 - 2x_{i} }}{{\sqrt {2{x_{i}^{2}} - 2x_{i} + 1} }} \ge 0 ,\quad \forall i $$

which implies \(x_{i} \le \frac {1}{2}\), ∀i∈{1,⋯,n}. So, we obtain that

$$\left\{ \begin{array}{l} x_{i} = \frac{1}{2}\left( {1 - \sqrt {\frac{{\lambda^{2} }}{{2 - \lambda^{2} }}} } \right) \\ \sum\limits_{i = 1}^{n} {x_{i} } = 1 \\ \end{array} \right. $$

Namely, L(m) gets a maximum value at

$$x_{1} = x_{2} = {\cdots} = x_{n} = 1/n. $$

Moreover, we calculate the second-order derivative of the Lagrangian function L(m)

$$\begin{array}{l} \frac{{\partial^{2} L(m)}}{{\partial {x_{i}^{2}} }} = \frac{{(2x_{i} - 1)^{2} }}{{\left( {\sqrt {2{x_{i}^{2}} - 2x_{i} + 1} } \right)^{3} }} - \frac{2}{{\sqrt {2{x_{i}^{2}} - 2x_{i} + 1} }} \\ \quad \quad \quad = \frac{1}{{\sqrt {2{x_{i}^{2}} - 2x_{i} + 1} }}\left[ {\frac{{(2x_{i} - 1)^{2} }}{{2{x_{i}^{2}} - 2x_{i} + 1}} - 2} \right] \\ \quad \quad \quad = \frac{1}{{\sqrt {2{x_{i}^{2}} - 2x_{i} + 1} }} \cdot \frac{{ - 1}}{{2{x_{i}^{2}} - 2x_{i} + 1}} \\ \quad \quad \quad < 0 \\ \end{array} $$

which means that iTU I is strictly concave. Therefore, for the bayesian BPA m, iTU I(m) attains the global maximum value when m(𝜃 i )=1/n, ∀𝜃 i ∈Θ.

Then, let us first prove property 4.2.

Assume that there is a bayesian BPA m defined on FOD Θ with |Θ| = n. In terms of property 3.1, iTU I(m) attains the maximum value when m(𝜃 i )=1/n, ∀𝜃 i ∈Θ. Then we have

$$\begin{array}{l} f = \max \;iTU^{I} (m) = \sum\limits_{i = 1}^{n} {\left( {1 - \sqrt {(1/n)^{2} + (1/n - 1)^{2} } } \right)} \\ \quad \quad \quad \quad \quad \quad \quad = n - \sqrt {n^{2} - 2n + 2} \\ \end{array} $$

Here,

$$\begin{array}{l} f_{n}^{\prime} = 1 - {{(n - 1)} \mathord{\left/ {\vphantom {{(n - 1)} {\sqrt {n^{2} - 2n + 2} }}} \right. \kern-\nulldelimiterspace} {\sqrt {n^{2} - 2n + 2} }} \\ \quad = 1 - {{(n - 1)} \mathord{\left/ {\vphantom {{(n - 1)} {\sqrt {(n - 1)^{2} + 1} }}} \right. \kern-\nulldelimiterspace} {\sqrt {(n - 1)^{2} + 1} }} \\ \quad > 0 \\ \end{array} $$

which means f is monotonically increasing with respect to n, \(n \in \mathbb {N}^ +\). Furthermore, \(\underset {{n \to + \infty }}{\lim } f = 1\). Hence

$$\max \;iTU^{I} (m_{1} ) < \max \;iTU^{I} (m_{2} ) $$

for bayesian BPAs m 1 defined on Θ1 with |Θ1| = n 1 and m 2 defined on Θ2 with |Θ2| = n 2, where n 1<n 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Xiao, F. & Deng, Y. An improved distance-based total uncertainty measure in belief function theory. Appl Intell 46, 898–915 (2017). https://doi.org/10.1007/s10489-016-0870-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-016-0870-3

Keywords

Navigation