Skip to main content
Log in

A novel fault prognostic approach based on particle filters and differential evolution

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper proposes an improved fault prognostic approach based on a modified particle filter with a built-in differential evolution characteristic. The main methodological contribution of this study is to handle the problem of sample impoverishment faced by particle filters when only a few particles are resampled. This is done by incorporating modified mutation and selection operators for differential evolution into the proposed particle filter. The proposed method is performed to deal with two real applications of condition monitoring and fault prognosis, namely an accelerated degradation of bearings under operating conditions from the platform PRONOSTIA and a high-speed computer numerical control (CNC) milling machine 3-flute cutters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ali M, Ahn CW, Siarry P (2014) Differential evolution algorithm for the selection of optimal scaling factors in image watermarking. Eng Appl Artif Intell 31:15–26. doi:10.1016/j.engappai.2013.07.009. Special Issue: Advances in Evolutionary Optimization Based Image Processing

    Article  Google Scholar 

  2. Arulampalam M, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188

    Article  Google Scholar 

  3. Chen C, Vachtsevanos G, Orchard ME (2012) Machine remaining useful life prediction: an integrated adaptive neuro-fuzzy and high-order particle filtering approach. Mech Syst Signal Process 28:597–607

    Article  Google Scholar 

  4. Chen C, Zhang B, Vachtsevanos G, Orchard M (2011) Machine condition prediction based on adaptive neuro-fuzzy and high-order particle filtering. IEEE Trans Ind Electron 58(9):4353–4364. doi:10.1109/TIE.2010.2098369

    Article  Google Scholar 

  5. Chen Z (2003) Bayesian filtering: from kalman filters to particle filters, and beyond. Tech. rep., McMaster University. http://www.dsi.unifi.it/users/chisci/idfric/Nonlinear_filtering_Chen.pdf

  6. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

    Article  Google Scholar 

  7. Douc R, Cappé O (2005) Comparison of resampling schemes for particle filtering. In: Proceedings of the 4th international symposium on image and signal processing and analysis, 2005. ISPA 2005. IEEE, pp 64–69

  8. Doucet A, Johansen AM (2009) A tutorial on particle filtering and smoothing: fifteen years later. Handb Nonlinear Filter 12(656–704):3

    MATH  Google Scholar 

  9. Guo H, Li Y, Liu X, Li Y, Sun H (2016) An enhanced self-adaptive differential evolution based on simulated annealing for rule extraction and its application in recognizing oil reservoir. Appl Intell 44(2):414–436

    Article  Google Scholar 

  10. Gustafsson F (2010) Particle filter theory and practice with positioning applications. IEEE Aerosp Electron Syst Mag 25(7):53–82

    Article  Google Scholar 

  11. Higuchi T (1997) Monte carlo filter using the genetic algorithm operators. J Stat Comput Simul 59(1):1–23

    Article  MathSciNet  MATH  Google Scholar 

  12. Jang JSR, Sun CT (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice-Hall, Inc., Upper Saddle River

    Google Scholar 

  13. Jardine AK, Lin D, Banjevic D (2006) A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Process 20(7):1483–1510

    Article  Google Scholar 

  14. Jouin M, Gouriveau R, Hissel D, Péra MC, Zerhouni N (2016) Particle filter-based prognostics: review, discussion and perspectives. Mech Syst. Signal Process 72–73:2–31

    Article  Google Scholar 

  15. Kordestani JK, Ahmadi A, Meybodi MR (2014) An improved differential evolution algorithm using learning automata and population topologies. Appl Intell 41(4):1150–1169

    Article  Google Scholar 

  16. Kwok N, Fang G, Zhou W (2005) Evolutionary particle filter: re-sampling from the genetic algorithm perspective. In: Proceedings of the IEEE/RSJ international conference on intelligent and robotic systems, pp 2935–2940

  17. Li D, Zhou Y (2015) Combining differential evolution with particle filtering for articulated hand tracking from single depth images. Int J Signal Process Image Process Pattern Recognit 8(4):237–248

    Google Scholar 

  18. Li HW, Wang J, Su HT (2011) Improved particle filter based on differential evolution. Electron Lett 47 (19):1078–1079

    Article  Google Scholar 

  19. Liao L (2014) Discovering prognostic features using genetic programming in remaining useful life prediction. IEEE Trans Ind Electron 61(5):2464–2472. doi:10.1109/TIE.2013.2270212

    Article  Google Scholar 

  20. Liao L (2014) Discovering prognostic features using genetic programming in remaining useful life prediction. IEEE Trans Ind Electron 61(5):2464–2472

    Article  Google Scholar 

  21. Liao L, Köttig F (2016) A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction. Appl Soft Comput 44:191–199. doi:10.1016/j.asoc.2016.03.013. http://www.sciencedirect.com/science/article/pii/S1568494616301223

    Article  Google Scholar 

  22. Nectoux P, Gouriveau R, Medjaher K, Ramasso E, Chebel-Morello B, Zerhouni N, Varnier C (2012) Pronostia: an experimental platform for bearings accelerated degradation tests. In: IEEE international conference on prognostics and health management, PHM’12, pp 1–8. IEEE Catalog Number: CPF12PHM-CDR

  23. Orchard ME, Hevia-Koch P, Zhang B, Tang L (2013) Risk measures for particle-filtering-based state-of-charge prognosis in lithium-ion batteries. IEEE Trans Ind Electron 60(11):5260–5269. doi:10.1109/TIE.2012.2224079

    Article  Google Scholar 

  24. Orchard ME, Vachtsevanos GJ (2009) A particle-filtering approach for on-line fault diagnosis and failure prognosis. Trans Inst Meas Control 31:221–246

    Article  Google Scholar 

  25. PHM Society (2010) Conference data challenge. https://www.phmsociety.org/competition/phm/10. Accessed 11 July 2016

  26. PHM Society (2010) Data challenge. https://www.phmsociety.org/. Accessed 11 July 2016

  27. Sikorska J, Hodkiewicz M, Ma L (2011) Prognostic modelling options for remaining useful life estimation by industry. Mech Syst Signal Process 25(5):1803–1836

    Article  Google Scholar 

  28. Simon D (2006) Optimal state estimation, Kalman, H , and nonlinear approaches. Wiley-Interscience

  29. Stron R, Price K (1996) Minimizing the real functions of the icec’96 contest by differential evolution. In: Proceedings of the IEEE international conference on evolutionary computation, pp 842–844

  30. Stron R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  MathSciNet  Google Scholar 

  31. Sun J, Zuo H, Wang W, Pecht MG (2014) Prognostics uncertainty reduction by fusing on-line monitoring data based on a state-space-based degradation model. Mech Syst Signal Process 45(2):396–407

    Article  Google Scholar 

  32. Vachtsevanos G, Lewis F, Roemer M, Hess A, Wu B (2006) Intelligent fault diagnosis and prognosis for engineering systems. Wiley, New York

    Book  Google Scholar 

  33. Vasan ASS, Long B, Pecht M (2013) Diagnostics and prognostics method for analog electronic circuits. IEEE Trans Ind Electron 60(11):5277–5291. doi:10.1109/TIE.2012.2224074

    Article  Google Scholar 

  34. Wang Y, Qi Y (2013) Memory-based cognitive modeling for robust object extraction and tracking. Appl Intell 39(3):614– 629

    Article  Google Scholar 

  35. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83

    Article  Google Scholar 

  36. Yan W, Zhang B, Wang X, Dou W, Wang J (2016) Lebesgue-sampling-based diagnosis and prognosis for lithium-ion batteries. IEEE Trans Ind Electron 63(3):1804–1812. doi:10.1109/TIE.2015.2494529

    Article  Google Scholar 

  37. Yin S, Zhu X (2015) Intelligent particle filter and its application to fault detection of nonlinear system. IEEE Trans Ind Electron 62(6):3852–3861

    Google Scholar 

  38. Yin S, Zhu X, Qiu J, Gao H (2016) State estimation in nonlinear system using sequential evolutionary filter. IEEE Trans Ind Electron 63(6):3786–3794

    Article  Google Scholar 

  39. Yu M, Wang D, Luo M (2015) An integrated approach to prognosis of hybrid systems with unknown mode changes. IEEE Trans Ind Electron 62(1):503–515. doi:10.1109/TIE.2014.2327557

    Article  Google Scholar 

  40. Zhao Z, Wang J, Tian Q, Cao M (2010) Particle swarm-differential evolution cooperative optimized particle filter. In: 2010 international conference on intelligent control and information processing, pp 485–490

    Book  Google Scholar 

  41. Zou D, Liu H, Gao L, Li S (2011) An improved differential evolution algorithm for the task assignment problem. Eng Appl Artif Intell 24(4):616–624. doi:10.1016/j.engappai.2010.12.002

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian National Research Council (CNPq) and the Research Foundation of the State of Minas Gerais (FAPEMIG), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana B. Cosme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cosme, L.B., D’Angelo, M.F.S.V., Caminhas, W.M. et al. A novel fault prognostic approach based on particle filters and differential evolution. Appl Intell 48, 834–853 (2018). https://doi.org/10.1007/s10489-017-1013-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-1013-1

Keywords

Navigation