Skip to main content
Log in

A synthetic neighborhood generation based ensemble learning for the imbalanced data classification

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Constructing effective classifiers from imbalanced datasets has emerged as one of the main challenges in the data mining community, due to its increased prevalence in various real-world domains. Ensemble solutions are quite often applied in this field for their ability to provide better classification ability than single classifier. However, most existing methods adopt data sampling to train the base classifier on balanced datasets, but not to directly enhance the diversity. Thus, the performance of the final classifier can be limited. This paper suggests a new ensemble learning that can address the class imbalance problem and promote diversity simultaneously. Inspired by the localized generalization error model, this paper generates some synthetic samples located within some local area of the training samples, and trains the base classifiers with the union of original training samples and synthetic neighborhoods samples. By controlling the number of generated samples, the base classifiers can be trained with balanced datasets. Meanwhile, as the generated samples can extend different parts of the original input space and can be quite different from the original training samples, the obtained base classifiers are guaranteed to be accurate and diverse. A thorough experimental study on 36 benchmark datasets was performed, and the experimental results demonstrated that our proposed method can deliver significant better performance than the state-of-the-art ensemble solutions for the imbalanced problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. López V, Fernández A, García S, Palade V, Herrera F (2013) An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf Sci 250:113–141

    Article  Google Scholar 

  2. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F (2012) A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cybern Part C Appl Rev 42(4):463–484

    Article  Google Scholar 

  3. He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284

    Article  Google Scholar 

  4. Yang Q, Wu X (2006) 10 Challenging problems in data mining research. Int J Inf Technol Decis Mak 05 (04):597–604

    Article  Google Scholar 

  5. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Int Res 16(1):321–357

  6. Han H, Wang W-Y, Mao B-H (2005) Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Advances in intelligent computing. Springer, pp 878–887

  7. Barua S, Islam MM, Yao X, Murase K (2014) MWMOTE–majority weighted minority oversampling technique for imbalanced data set learning. IEEE Trans Knowl Data Eng 26(2):405–425

    Article  Google Scholar 

  8. Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C (2011) DBSMOTE: density-based synthetic minority over-sampling technique. Appl Intell 36(3):664–684

    Article  Google Scholar 

  9. Liu X-Y, Wu J, Zhou Z-H (2009) Exploratory undersampling for class-imbalance learning. Trans Syst Man Cybern Part B 39(2):539–550

    Article  Google Scholar 

  10. Galar M, Fernández A, Barrenechea E, Herrera F (2013) EUSBoost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern Recognit 46(12):3460–3471

    Article  Google Scholar 

  11. Yu H, Ni J, Zhao J (2013) ACOSampling: an ant colony optimization-based undersampling method for classifying imbalanced DNA microarray data. Neurocomput 101:309–318

    Article  Google Scholar 

  12. Qian Y, Liang Y, Li M, Feng G, Shi X (2014) A resampling ensemble algorithm for classification of imbalance problems. Neurocomputing 143:57–67

    Article  Google Scholar 

  13. Stefanowski J, Wilk S (2008) Selective pre-processing of imbalanced data for improving classification performance. In: Song I-Y, Eder J, Nguyen TM (eds) Data warehousing and knowledge discovery: 10th international conference, DaWaK 2008 Turin, Italy, September 2–5, 2008 Proceedings. Springer, Berlin, pp 283–292

  14. Sun Z, Song Q, Zhu X, Sun H, Xu B, Zhou Y (2015) A novel ensemble method for classifying imbalanced data. Pattern Recognit 48(5):1623–1637

    Article  Google Scholar 

  15. Kittler J, Hatef M, Duin RPW, Matas J (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226–239

    Article  Google Scholar 

  16. Díez-Pastor JF, Rodríguez JJ, García-Osorio CI, Kuncheva LI (2015) Diversity techniques improve the performance of the best imbalance learning ensembles. Inf Sci 325:98–117

    Article  MathSciNet  Google Scholar 

  17. Visentini I, Snidaro L, Foresti GL (2016) Diversity-aware classifier ensemble selection via f-score. Inf Fusion 28:24–43

    Article  Google Scholar 

  18. Yeung DS, Ng WW, Wang D, Tsang EC, Wang X-Z (2007) Localized generalization error model and its application to architecture selection for radial basis function neural network. IEEE Trans Neural Netw 18(5):1294–1305

    Article  Google Scholar 

  19. Ng WWY, Dorado A, Yeung DS, Pedrycz W, Izquierdo E (2007) Image classification with the use of radial basis function neural networks and the minimization of the localized generalization error. Pattern Recognit 40(1):19–32

    Article  MATH  Google Scholar 

  20. Ng WWY, Yeung DS, Firth M, Tsang ECC, Wang X-Z (2008) Feature selection using localized generalization error for supervised classification problems using RBFNN. Pattern Recognit 41(12):3706–3719

    Article  MATH  Google Scholar 

  21. Chen Z, Lin T, Chen R, Xie Y, Xu H (2017) Creating diversity in ensembles using synthetic neighborhoods of training samples. Appl Intell 47(2):570–583

  22. Weiss GM, Tian Y (2008) Maximizing classifier utility when there are data acquisition and modeling costs. Data Min Knowl Disc 17(2):253–282

    Article  MathSciNet  Google Scholar 

  23. Sun Y, Kamel MS, Wong AKC, Wang Y (2007) Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit 40(12):3358–3378

    Article  MATH  Google Scholar 

  24. Wang S, Yao X, IEEE (2009) Diversity analysis on imbalanced data sets by using ensemble models. In: 2009 IEEE symposium on computational intelligence and data mining. IEEE, New York, pp 324–331

  25. Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A (2010) RUSBoost: a hybrid approach to alleviating class imbalance. IEEE Trans Syst Man Cybern Part A Syst Hum 40(1):185–197

    Article  Google Scholar 

  26. Barandela R, Sanchez JS, Valdovinos RM (2003) New applications of ensembles of classifiers. Pattern Anal Appl 6(3):245–256

    Article  MathSciNet  Google Scholar 

  27. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    MATH  Google Scholar 

  28. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  MathSciNet  MATH  Google Scholar 

  29. Chawla NV, Lazarevic A, Hall LO, Bowyer KW et al (2003) SMOTEBoost: improving prediction of the minority class in boosting. In: Lavrač N (ed) Knowledge discovery in databases: PKDD 2003: 7th European conference on principles and practice of knowledge discovery in databases, Cavtat-Dubrovnik, Croatia, September 22–26, 2003. Proceedings. Springer, Berlin, pp 107–119

  30. Freund Y (1996) Experiments with a new boosting algorithm. In: Thirteenth international conference on machine learning

  31. Bhowan U, Johnston M, Zhang M, Yao X (2014) Reusing genetic programming for ensemble selection in classification of unbalanced data. IEEE Trans Evol Comput 18(6):893–908

    Article  Google Scholar 

  32. Díez-Pastor JF, Rodríguez JJ, García-Osorio C, Kuncheva LI (2015) Random balance: ensembles of variable priors classifiers for imbalanced data. Knowl-Based Syst 85:96–111

    Article  Google Scholar 

  33. Melville P, Mooney RJ (2005) Creating diversity in ensembles using artificial data. Inf Fusion 6(1):99–111

    Article  Google Scholar 

  34. Martínez-Muñoz G, Suárez A (2005) Switching class labels to generate classification ensembles. Pattern Recognit 38(10):1483–1494

    Article  Google Scholar 

  35. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844

    Article  Google Scholar 

  36. Akhand MA, Murase K (2012) Ensembles of neural networks based on the alteration of input feature values. Int J Neural Syst 22(1):77–87

    Article  Google Scholar 

  37. Brown G, Wyatt J, Harris R, Yao X (2005) Diversity creation methods: a survey and categorisation. Inf Fusion 6(1):5–20

    Article  Google Scholar 

  38. Akhand MAH, Islam MM, Murase K (2009) A comparative study of data sampling techniques for constructing neural network ensembles. Int J Neural Syst 19(02):67–89

    Article  Google Scholar 

  39. Sun B, Ng WWY, Yeung DS, Chan PPK (2013) Hyper-parameter selection for sparse LS-SVM via minimization of its localized generalization error. Int J Wavelets Multiresolution Inf Process 11(03):1350030

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang H, Li M (2014) RWO-sampling: a random walk over-sampling approach to imbalanced data classification. Inf Fusion 20:99–116

    Article  Google Scholar 

  41. Alcalá-Fdez J, Sánchez L, García S, del Jesus MJ, Ventura S, Garrell JM, Otero J, Romero C, Bacardit J, Rivas VM, Fernández JC, Herrera F (2009) KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput 13(3):307–318

    Article  Google Scholar 

  42. Chang CC, Lin CJ (2007) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3, article 27):389–396

    Google Scholar 

  43. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor Newsl 11(1):10–18

    Article  Google Scholar 

  44. Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit 30(7):1145–1159

    Article  Google Scholar 

  45. Huang J, Ling CX (2005) Using AUC and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng 17(3):299–310

    Article  Google Scholar 

  46. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7(1):1–30

    MathSciNet  MATH  Google Scholar 

  47. Hodges JL, Lehmann EL (1962) Rank methods for combination of independent experiments in analysis of variance. Ann Math Stat 33(2):482–497

    Article  MathSciNet  MATH  Google Scholar 

  48. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70

    MathSciNet  MATH  Google Scholar 

  49. Tsymbal A, Pechenizkiy M, Cunningham P (2005) Diversity in search strategies for ensemble feature selection. Inf Fusion 6(1):83–98

    Article  Google Scholar 

Download references

Acknowledgements

The research is partly supported by Science and Technology Supporting Program, Sichuan Province, China (2013GZX0138 and 2014GZ0154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Lin, T., Xia, X. et al. A synthetic neighborhood generation based ensemble learning for the imbalanced data classification. Appl Intell 48, 2441–2457 (2018). https://doi.org/10.1007/s10489-017-1088-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-1088-8

Keywords

Navigation