Skip to main content
Log in

Trajectory outlier detection approach based on common slices sub-sequence

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Trajectory outlier detection is one of the most popular trajectory data mining topics. It helps researchers obtain a lot of valuable information that can be used as important guidance in monitoring and forecasting. Existing methods have difficulty in detecting the outlying trajectories with continuous multi-segment exception. To address the problem, in this paper, we propose a novel trajectory outlier detection algorithm based on common slices sub-sequence (TODCSS). For each trajectory, the direction-code sequence is firstly calculated based on the direction of each trajectory segment. Secondly, the corresponding sequence consisting of trajectory slices is obtained by inflection point segmentation. And then, the common slices sub-sequences between two trajectories are found to measure their distance. Finally, the slice outliers and trajectory outliers are detected based on the new CSS distance calculation. Both the intuitive visualization presentation and the experimental results on real Atlantic hurricane dataset, real-life mobility trajectory dataset of taxis in San Francisco and synthetic labeled dataset show that the proposed TODCSS algorithm effectively detects slice and trajectory outliers, and improves accuracy and stability in trajectory outlier detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. http://avires.dimi.uniud.it/papers/trclust/create_ts2.m.

References

  1. Lee JG, Han J, Li X (2008) Trajectory outlier detection: a partition-and-detect framework. In: Proceedings of the 24th IEEE International Conference on Data Engineering (ICDE), pp 140–149

  2. Su H, Zheng K, Huang J et al (2015) Calibrating trajectory data for spatio-temporal similarity analysis. VLDB J 24(1):93–116

    Article  Google Scholar 

  3. Sanchez I, Aye ZMM, Rubinstein BIP et al (2016) Fast trajectory clustering using hashing methods. In: Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), pp 3689–3696

  4. Anagnostopoulos C, Hadjiefthymiades S (2014) Intelligent trajectory classification for improved movement prediction. IEEE Trans Syst Man Cybern Syst 44(10):1301–1314

    Article  Google Scholar 

  5. Chen CM, Pi DC, Fang ZR (2012) Artificial immune algorithm applied to short-term prediction for mobile object location. Electron Lett 48(17):1061–1062

    Article  Google Scholar 

  6. Gupta M, Gao J, Aggarwal CC (2014) Outlier detection for temporal data: a survey. IEEE Trans Knowl Data Eng 25(1):1–20

    MATH  Google Scholar 

  7. Laxhammar R, Falkman G (2014) Online learning and sequential anomaly detection in trajectories. IEEE Trans Pattern Anal Mach Intell 36(6):1158–1173

    Article  MATH  Google Scholar 

  8. Shen M, Liu DR, Shann SH (2015) Outlier detection from vehicle trajectories to discover roaming events. Inform Sci 294:242–254

    Article  MathSciNet  Google Scholar 

  9. Laxhammar R, Falkman G (2015) Inductive conformal anomaly detection for sequential detection of anomalous sub-trajectories. Ann Math Artif Intell 74(1-2):67–94

    Article  MathSciNet  MATH  Google Scholar 

  10. Han J, Kamber M, Pei J (2013) Data mining: concepts and techniques. Morgan Kaufmann, San Francisco

    MATH  Google Scholar 

  11. Gan G, Ng M K -P (2017) K-means clustering with outlier removal. Pattern Recogn Lett 90:8–14

    Article  Google Scholar 

  12. Albanese A, Pal S K (2014) Rough sets, kernel set, and spatiotemporal outlier detection. IEEE Trans Knowl Data Eng 26(1):194–207

    Article  Google Scholar 

  13. Aggarwal CC (2017) Outlier analysis, 2nd edn. Springer International Publishing

  14. Li Z, Ding B, Han J et al (2010) Swarm: mining relaxed temporal moving object clusters. In: Proceedings of the VLDB Endowment vol 3, no 1, pp 723–734

  15. Ge Y, Xiong H, Liu C et al (2012) A taxi driving fraud detection system. In: Proceedings of the IEEE International conference on data mining (ICDM), pp 181–190

  16. Yu Y, Cao L, Rundensteiner EA et al (2014) Detecting moving object outliers in massive-scale trajectory streams. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, vol 8, pp 422–431

  17. Chen J, Abbady S, Duggimpudi MB (2016) Spatiotemporal outlier detection: did buoys tell where the hurricanes were?. Papers Appl Geograph 2(3):298–314

    Article  Google Scholar 

  18. Knorr EM, Ng RT, Tucakov V (2000) Distance-based outliers: algorithms and applications. The VLDB J 8(3-4):237–253

    Article  Google Scholar 

  19. Li X (2007) ROAM: rule- and motif-based anomaly detection in massive moving object data sets. In: Proceedings of the SIAM international conference on data mining, pp 273–284

  20. Bu Y, Chen L, Fu A W -C et al (2009) Efficient anomaly monitoring over moving object trajectory streams. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining (KDD 09), pp 159–168

  21. Zhu J, Jiang W, Liu A et al (2015) Time-dependent popular routes based trajectory outlier detection. In: Proceedings of the international conference on web information systems engineering, pp 16–30

  22. Guan B, Zhang Y, Liu L et al (2012) An improving algorithm of trajectory outliers detection. Advances in intelligent and soft computing. Springer, Berlin, pp 907–914

    Google Scholar 

  23. Masciari E (2011) Trajectory outlier detection using an analytical approach. In: Proceedings of the 23rd IEEE international conference on tools with artificial intelligence, pp 377–384

  24. Zhang D, Li N, Zhou Z-H et al (2011) iBAT: detecting anomalous taxi trajectories from GPS traces. In: Proceedings of the 13th ACM international conference on Ubiquitous Computing (UbiComp 11), pp 99–108

  25. Mohamad I, Ali MAM, Ismail M (2011) Abnormal driving detection using real time global positioning system data. In: Proceedings of the IEEE international conference on space science and communication, pp 1–6

  26. Chen C, Zhang D, Castro PS et al (2013) iBOAT: isolation-based online anomalous trajectory detection. IEEE Trans Intell Transp Syst 14(2):806–818

    Article  Google Scholar 

  27. Li X, Li Z, Han J et al (2009) Temporal outlier detection in vehicle traffic data. In: Proceedings of the IEEE International Conference on Data Engineering (ICDE), pp 1319–1322

  28. Ge Y, Xiong H, Zhou Z et al (2010) TOP-EYE: top-k evolving trajectory outlier detection. In: Proceedings of the 19th ACM International conference on information and knowledge management, pp 1733–1736

  29. Zhu J, Jiang W, Liu A et al (2017) Effective and efficient trajectory outlier detection based on time-dependent popular route. World Wide Web 20(1):111–134

    Article  Google Scholar 

  30. Domingo-Ferrer J, Trujillo-Rasua R (2012) Microaggregation- and permutation-based anonymization of movement data. Inform Sci 208:55–80

    Article  Google Scholar 

  31. UNISYS (2015) Atlantic tropical storm tracking by year[EB/OL]. http://weather.unisys.com/hurricane/atlantic/

  32. Piorkowski M, Sarafijanovic-Djukic N, Grossglauser M (2009) CRAWDAD dataset epfl/mobility(v 2009-02-24)[EB/OL]. https://doi.org/10.15783/C7J010

  33. Piorkowski M, Sarafijanovic-Djukic N, Grossglauser M (2009) A parsimonious model of mobile partitioned networks with clustering. In: Proceedings of the 1st international conference on communication systems and NETworks, pp 1–10

  34. Chen Y, Miao D, Zhang H (2010) Neighborhood outlier detection. Expert Syst Appl 37(12):8745–8749

    Article  Google Scholar 

  35. Lv M, Chen L, Xu Z et al (2016) The discovery of personally semantic places based on trajectory data mining. Neurocomputing 173:1142–1153

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their useful comments and suggestions for this paper. This work was supported by the National Natural Science Foundation of China (61702010, 61672039), the Key Program for University Top Talents of Anhui Province (gxbjZD2016011), the Natural Science Foundation of Anhui Province (1508085QF134), the University Natural Science Research Program of Anhui Province (KJ2017A327), and the Science and Technology Project of Wuhu City (2016cxy04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonglong Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Luo, Y., Chen, C. et al. Trajectory outlier detection approach based on common slices sub-sequence. Appl Intell 48, 2661–2680 (2018). https://doi.org/10.1007/s10489-017-1104-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-1104-z

Keywords

Navigation