Skip to main content
Log in

Some hybrid weighted aggregation operators under neutrosophic set environment and their applications to multicriteria decision-making

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

A single-valued and an interval neutrosophic sets are two instances of the neutrosophic set(NS), which can efficiently deal with uncertain, imprecise and inconsistent information. In the present work, the work has been done under this environment to develop some novel hybrid aggregation operators based on arithmetic and geometric aggregation operators. The preferences related to the attributes are made in the form of single-valued and interval neutrosophic numbers. Their desirable properties such as idempotency, boundedness and monotonicity are also investigated. Furthermore, a decision-making approach presents to investigate the multi-criteria decision-making problem. The effectiveness of the approach is demonstrated through a case study and a comparison analysis with some other existing methods has been done to validate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiwu Z, Jianguo D, Hongjun G (2015) Interval valued neutrosophic sets and multi-attribute decision-making based on generalized weighted aggregation operator. J Intell Fuzzy Syst 29:2697–2706

    Article  Google Scholar 

  2. Ali M, Thanh ND, Van Minh N et al (2017) A neutrosophic recommender system for medical diagnosis based on algebraic neutrosophic measures. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2017.10.012

    Article  Google Scholar 

  3. Arora R, Garg H (2018) Prioritized averaging/geometric aggregation operators under the intuitionistic fuzzy soft set environment. Scientia Iranica E 25(1):466–482

    Google Scholar 

  4. Arora R, Garg H (2018) Robust aggregation operators for multi-criteria decision making with intuitionistic fuzzy soft set environment. Scientia Iranica E 25(2):931–942

    Google Scholar 

  5. Arora R, Garg H (2018) A robust correlation coefficient measure of dual hesistant fuzzy soft sets and their application in decision making. Eng Appl Artif Intel 72:80–92

    Article  Google Scholar 

  6. Atanassov K, Gargov G (1989) Interval-valued intuitionistic fuzzy sets. Fuzzy Set Syst 31:343–349

    Article  MathSciNet  Google Scholar 

  7. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Set Syst 20:87–96

    Article  Google Scholar 

  8. Garg H (2016) Generalized intuitionistic fuzzy interactive geometric interaction operators using Einstein t-norm and t-conorm and their application to decision making. Comput Ind Eng 101:53–69

    Article  Google Scholar 

  9. Garg H (2016) A new generalized improved score function of interval-valued intuitionistic fuzzy sets and applications in expert systems. Appl Soft Comput 38:988–999

    Article  Google Scholar 

  10. Garg H (2016) A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making. Int J Intell Syst 31(9):886–920

    Article  Google Scholar 

  11. Garg H (2017) Novel intuitionistic fuzzy decision making method based on an improved operation laws and its application. Eng Appl Artif Intel 60:164–174

    Article  Google Scholar 

  12. Garg H (2018) A linear programming method based on an improved score function for interval-valued pythagorean fuzzy numbers and its application to decision-making. Int J Uncertainty Fuzziness Knowledge Based Syst 26(1):67–80

    Article  MathSciNet  Google Scholar 

  13. Garg H (2018) Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision-making process. Int J Intell Syst 33(6):1234–1263

    Article  Google Scholar 

  14. Garg H (2018) New exponential operational laws and their aggregation operators for interval-valued Pythagorean fuzzy multicriteria decision - making. Int J Intell Syst 33(3):653–683

    Article  Google Scholar 

  15. Garg H, Arora R (2018) Generalized and group-based generalized intuitionistic fuzzy soft sets with applications in decision-making. Appl Intell 48(2):343–356

    Article  Google Scholar 

  16. Garg H, Nancy (2018) Non-linear programming method for multi-criteria decision making problems under interval neutrosophic set environment. Appl Intell 48(8):2199–2213

    Article  Google Scholar 

  17. Garg H, Nancy (2017) Some new biparametric distance measures on single-valued neutrosophic sets with applications to pattern recognition and medical diagnosis. Information 8:162. https://doi.org/10.3390/info8040162

    Article  Google Scholar 

  18. Garg H, Nancy (2018) Linguistic single-valued neutrosophic prioritized aggregation operators and their applications to multiple-attribute group decision-making. J Ambient Intell Humaniz Comput pp 1–23. https://doi.org/10.1007/s12652-018-0723-5

    Article  Google Scholar 

  19. Ji P, Wang JQ, Zhang HY (2016) Frank prioritized bonferroni mean operator with single-valued neutrosophic sets and its application in selecting third-party logistics providers. Neural Computing and Applications pp 125. https://doi.org/10.1007/s00521-016-2660-6

    Article  Google Scholar 

  20. Kaur G, Garg H (2018) Multi - attribute decision - making based on bonferroni mean operators under cubic intuitionistic fuzzy set environment. Entropy 20(1):65. https://doi.org/10.3390/e20010065

    Article  MathSciNet  Google Scholar 

  21. Kumar K, Garg H (2018) TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment. Comput Appl Math 37(2):1319–1329

    Article  MathSciNet  Google Scholar 

  22. Kumar K, Garg H (2018) Connection number of set pair analysis based TOPSIS method on intuitionistic fuzzy sets and their application to decision making. Appl Intell 48(8):2112–2119

    Article  Google Scholar 

  23. Liu P, Chu Y, Li Y, Chen Y (2014) Some generalized neutrosophic number hamacher aggregation operators and their application to group decision making. Int J Fuzzy Syst 16(2):242–255

    Google Scholar 

  24. Ma YX, Wang JQ, Wang J, Wu XH (2016) An interval neutrosophic linguistic multi-criteria group decision-making method and its application in selecting medical treatment options. Neural Computing and Application pp 1–21. https://doi.org/10.1007/s00521-016-2203-1

    Article  Google Scholar 

  25. Nancy, Garg H (2016) An improved score function for ranking neutrosophic sets and its application to decision-making process. Int J Uncertain Quantif 6(5):377–385

    Article  Google Scholar 

  26. Nancy, Garg H (2016) Novel single-valued neutrosophic decision making operators under frank norm operations and its application. Int J Uncertain Quantif 6(4):361–375

    Article  Google Scholar 

  27. Ngan RT, Ali M, Son LH (2018) δ-equality of intuitionistic fuzzy sets: a new proximity measure and applications in medical diagnosis. Appl Intell 48(2):499–525

    Article  Google Scholar 

  28. Peng JJ, Wang JQ, Wang J, Zhang HY, Chen ZH (2016) Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. Int J Syst Sci 47(10):2342–2358

    Article  Google Scholar 

  29. Rani D, Garg H (2017) Distance measures between the complex intuitionistic fuzzy sets and its applications to the decision - making process. Int J Uncertain Quantif 7(5):423–439

    Article  MathSciNet  Google Scholar 

  30. Singh S, Garg H (2017) Distance measures between type-2 intuitionistic fuzzy sets and their application to multicriteria decision-making process. Appl Intell 46(4):788–799

    Article  Google Scholar 

  31. Smarandache F (1999) A unifying field in logics. Neutrosophy: neutrosophic probability set and logic. American Research Press, Rehoboth

    MATH  Google Scholar 

  32. Thanh ND, Ali M et al (2017) Neutrosophic recommender system for medical diagnosis based on algebraic similarity measure and clustering pp 1–6

  33. Thanh ND, Ali M, et al (2017b) A novel clustering algorithm in a neutrosophic recommender system for medical diagnosis. Cogn Comput 9(4):526–544

    Article  Google Scholar 

  34. Wang H, Smarandache F, Zhang YQ, Smarandache R (2005) Interval neutrosophic sets and logic: theory and applications in computing Hexis, Phoenix, AZ

  35. Wang H, Smarandache F, Zhang YQ, Sunderraman R (2010) Single valued neutrosophic sets. Multispace Multistructure 4:410–413

    MATH  Google Scholar 

  36. Xu ZS (2007) Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst 15:1179–1187

    Article  Google Scholar 

  37. Xu ZS, Yager RR (2006) Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst 35:417–433

    Article  MathSciNet  Google Scholar 

  38. Ye J (2014) A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J Intell Fuzzy Syst 26(5):2459–2466

    MathSciNet  MATH  Google Scholar 

  39. Ye J (2017) Intuitionistic fuzzy hybrid arithmetic and geometric aggregation operators for the decision-making of mechanical design schemes. Appl Intell 47:743–751

    Article  Google Scholar 

  40. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  41. Zhang HY, Wang JQ, Chen XH (2014) Interval neutrosophic sets and their application in multicriteria decision making problems. Sci World J 2014(645,953):15

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the editor and anonymous reviewers for their constructive comments and suggestions that helped us in improving the paper significantly. Also, the second author (Nancy) would like to thank the University Grant Commission, New Delhi, India for providing financial support under Maulana Azad National Fellowship scheme wide File No. F1-17.1/2017-18/MANF-2017-18-PUN-82613/(SA-III/Website) during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Garg.

Appendix

Appendix

Proof of the Theorem 1:

Proof

By using the operational laws for SVNNs βj(j = 1, 2,…,n) and a real number λ ∈ [0, 1], we have

$$\begin{array}{@{}rcl@{}} \bigoplus\limits_{j = 1}^{n}\omega_{j}\beta_{j} &=& \left( 1-\prod\limits_{j = 1}^{n}(1-\zeta_{j})^{\omega_{j}}, \prod\limits_{j = 1}^{n}(\kappa_{j})^{\omega_{j}}, \prod\limits_{j = 1}^{n}(\varphi_{j})^{\omega_{j}} \right) \\ \text{and} \qquad \prod\limits_{j = 1}^{n}\beta_{j}^{\omega_{j}} &=& \left( \prod\limits_{j = 1}^{n}(\zeta_{j})^{\omega_{j}}, 1-\prod\limits_{j = 1}^{n}(1-\kappa_{j})^{\omega_{j}}, 1-\prod\limits_{j = 1}^{n}(1-\varphi_{j})^{\omega_{j}}\right) \end{array} $$

which implies that

$$\begin{array}{@{}rcl@{}} \left( \bigoplus\limits_{j = 1}^{n}\omega_{j}\beta_{j}\right)^{\lambda} &=&\left( \begin{array}{lllll} & \left( 1-\prod\limits_{j = 1}^{n}(1-\zeta_{j})^{\omega_{j}}\right)^{\lambda}, 1-\left( 1-\prod\limits_{j = 1}^{n}(\kappa_{j})^{\omega_{j}}\right)^{\lambda}, \\ & \qquad \qquad \qquad 1-\left( 1- \prod\limits_{j = 1}^{n}(\varphi_{j})^{\omega_{j}}\right)^{\lambda} \end{array} \right) \end{array} $$
(18)

and

$$\begin{array}{@{}rcl@{}} \left( \prod\limits_{j = 1}^{n}\beta_{j}^{\omega_{j}}\right)^{1-\lambda}&=& \left( \begin{array}{lllll} & \left( \prod\limits_{j = 1}^{n}(\zeta_{j})^{\omega_{j}}\right)^{1-\lambda}, 1-\left( \prod\limits_{j = 1}^{n}(1-\kappa_{j})^{\omega_{j}}\right)^{1-\lambda}, \\ & \qquad \qquad \qquad 1-\left( \prod\limits_{j = 1}^{n}(1-\varphi_{j})^{\omega_{j}}\right)^{1-\lambda} \end{array} \right) \end{array} $$
(19)

Thus, by Definition 5, we have

$$\begin{array}{@{}rcl@{}} &&\text{H-SVNWAG}(\beta_{1},\beta_{2}, \ldots, \beta_{n}) \\ &=& \left( \begin{array}{lllll} & \left( 1-\prod\limits_{j = 1}^{n}(1-\zeta_{j})^{\omega_{j}}\right)^{\lambda}, \\ & 1-\left( 1-\prod\limits_{j = 1}^{n}(\kappa_{j})^{\omega_{j}}\right)^{\lambda},\\ & 1-\left( 1- \prod\limits_{j = 1}^{n}(\varphi_{j})^{\omega_{j}}\right)^{\lambda} \end{array} \right) \bigotimes \left( \begin{array}{lllll} & \left( \prod\limits_{j = 1}^{n}(\zeta_{j})^{\omega_{j}}\right)^{1-\lambda}, \\ & 1-\left( \prod\limits_{j = 1}^{n}(1-\kappa_{j})^{\omega_{j}}\right)^{1-\lambda}, \\ & 1-\left( \prod\limits_{j = 1}^{n}(1-\varphi_{j})^{\omega_{j}}\right)^{1-\lambda} \end{array} \right) \\ \end{array} $$
$$\begin{array}{@{}rcl@{}} &=& \left( \begin{array}{lllll} & \left( 1-\prod\limits_{j = 1}^{n}(1-\zeta_{j})^{\omega_{j}}\right)^{\lambda} \left( \prod\limits_{j = 1}^{n}(\zeta_{j})^{\omega_{j}}\right)^{1-\lambda}, \left\{1-\left( 1-\prod\limits_{j = 1}^{n}(\kappa_{j})^{\omega_{j}}\right)^{\lambda} \right\} + \left\{1-\left( \prod\limits_{j = 1}^{n}(1-\kappa_{j})^{\omega_{j}}\right)^{1-\lambda} \right\} \\ & -\left\{1-\left( 1-\prod\limits_{j = 1}^{n}(\kappa_{j})^{\omega_{j}}\right)^{\lambda}\right\} \left\{1-\left( \prod\limits_{j = 1}^{n}(1-\kappa_{j})^{\omega_{j}}\right)^{1-\lambda}\right\}, \left\{1-\left( 1-\prod\limits_{j = 1}^{n}(\varphi_{j})^{\omega_{j}}\right)^{\lambda} \right\} \\ & + \left\{1-\left( \prod\limits_{j = 1}^{n}(1-\varphi_{j})^{\omega_{j}}\right)^{1-\lambda} \right\} -\left\{1-\left( 1-\prod\limits_{j = 1}^{n}(\varphi_{j})^{\omega_{j}}\right)^{\lambda}\right\} \left\{1-\left( \prod\limits_{j = 1}^{n}(1-\varphi_{j})^{\omega_{j}}\right)^{1-\lambda}\right\} \end{array} \right)\\ &=& \left( \begin{array}{lllll} & \left( 1-\prod\limits_{j = 1}^{n}(1-\zeta_{j})^{\omega_{j}}\right)^{\lambda}\left( \prod\limits_{j = 1}^{n}{\zeta_{j}}^{\omega_{j}}\right)^{1-\lambda}, 1-\left( 1-\prod\limits_{j = 1}^{n}{\kappa_{j}}^{\omega_{j}}\right)^{\lambda} \left( \prod\limits_{j = 1}^{n}(1-\kappa_{j})^{\omega_{j}}\right)^{1-\lambda} \\ & 1-\left( 1-\prod\limits_{j = 1}^{n}{\varphi_{j}}^{\omega_{j}}\right)^{\lambda} \left( \prod\limits_{j = 1}^{n}(1-\varphi_{j})^{\omega_{j}}\right)^{1-\lambda} \end{array} \right) \end{array} $$

Hence, the result.

Proof of the Theorem 2:

Proof

For SVNNs βj = (ζj, κj, φj)(j = 1, 2,…,n) and ω = (ω1, ω2,…,ωn)T be their normalized weight vector, then we have \(\prod \limits _{j = 1}^{n}\zeta _{j}^{\omega _{j}} \leq 1-\prod \limits _{j = 1}^{n}(1-\zeta _{j})^{\omega _{j}}\) and \(0 \leq \prod \limits _{j = 1}^{n}\zeta _{j}^{\omega _{j}} , 1-\prod \limits _{j = 1}^{n}(1-\zeta _{j})^{\omega _{j}} \leq 1\). Therefore, for a real number λ ∈ [0, 1] we have

$$\left( \prod\limits_{j = 1}^{n}\zeta_{j}^{\omega_{j}}\right)^{1-\lambda} \leq \left( 1-\prod\limits_{j = 1}^{n}(1-\zeta_{j})^{\omega_{j}}\right)^{1-\lambda} $$

which implies that

$$ \left( 1-\prod\limits_{j = 1}^{n}(1-\zeta_{j})^{\omega_{j}}\right)^{\lambda}\left( \prod\limits_{j = 1}^{n}\zeta_{j}^{\omega_{j}}\right)^{1-\lambda} \leq 1-\prod\limits_{j = 1}^{n}(1-\zeta_{j})^{\omega_{j}} $$
(20)

Similarly, for \(\prod \limits _{j = 1}^{n}\kappa _{j}^{\omega _{j}} \geq 1-\prod \limits _{j = 1}^{n}(1-\kappa _{j})^{\omega _{j}}\) and \(\prod \limits _{j = 1}^{n}\varphi _{j}^{\omega _{j}} \geq 1-\prod \limits _{j = 1}^{n}(1-\varphi _{j})^{\omega _{j}}\), we have

$$ \prod\limits_{j = 1}^{n}\kappa_{j}^{\omega_{j}} \leq 1-\left( 1-\prod\limits_{j = 1}^{n}\kappa_{j}^{\omega_{j}}\right)^{\lambda}\left( \prod\limits_{j = 1}^{n}(1-\kappa_{j})^{\omega_{j}}\right)^{1-\lambda} $$
(21)

and

$$ \prod\limits_{j = 1}^{n}\varphi_{j}^{\omega_{j}} \leq 1-\left( 1-\prod\limits_{j = 1}^{n}\varphi_{j}^{\omega_{j}}\right)^{\lambda}\left( \prod\limits_{j = 1}^{n}(1-\varphi_{j})^{\omega_{j}}\right)^{1-\lambda} $$
(22)

Thus, by using (20), (21) and (22) and the definition of score function, we get

$$\begin{array}{@{}rcl@{}} && S(\text{SVNWA}(\beta_{1},\beta_{2},\ldots, \beta_{n})) \\ &=& 1-\prod\limits_{j = 1}^{n}(1-\zeta_{j})^{\omega_{j}} - \prod\limits_{j = 1}^{n}\kappa_{j}^{\omega_{j}} - \prod\limits_{j = 1}^{n}\varphi_{j}^{\omega_{j}}\\ &\geq & \left( 1-\prod\limits_{j = 1}^{n}(1-\zeta_{j})^{\omega_{j}}\right)^{\lambda}\left( \prod\limits_{j = 1}^{n}\zeta_{j}^{\omega_{j}}\right)^{1-\lambda} \\&&- 1+\left( 1-\prod\limits_{j = 1}^{n}\kappa_{j}^{\omega_{j}}\right)^{\lambda}\left( \prod\limits_{j = 1}^{n}(1-\kappa_{j})^{\omega_{j}}\right)^{1-\lambda} \\ && - 1+\left( 1-\prod\limits_{j = 1}^{n}\varphi_{j}^{\omega_{j}}\right)^{\lambda}\left( \prod\limits_{j = 1}^{n}(1-\varphi_{j})^{\omega_{j}}\right)^{1-\lambda}\\ &=& S(\text{H-SVNWAG}(\beta_{1},\beta_{2},\ldots, \beta_{n})) \end{array} $$

Hence, H-SVNWAG(β1, β2,…,βn) ≤SVNWA(β1, β2, …,βn). Similarly, we can obtain that H-SVNWAG(β1, β2,…,βn) ≥SVNWG(β1, β2,…,βn). Thus, we get the required proof. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, H., Nancy Some hybrid weighted aggregation operators under neutrosophic set environment and their applications to multicriteria decision-making. Appl Intell 48, 4871–4888 (2018). https://doi.org/10.1007/s10489-018-1244-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-018-1244-9

Keywords

Navigation