Skip to main content

Advertisement

Log in

Robust multi-objective multi-humanoid robots task allocation based on novel hybrid metaheuristic algorithm

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Nowadays humanoid robots have generally made dramatic progress, which can form a coalition replacing human work in dangerous environments such as rescue, defense, exploration, etc. In contrast to other types of robots, humanoid robots’ similarity to human make them more suitable for performing such a wide range of tasks. Rescue applications for robots, especially for humanoid robots are exciting. In rescue operating conditions, tasks’ dependencies, tasks’ repetitive accomplishment requirements, robots’ energy consumption, and total tasks’ accomplishment time are key factors. This paper investigates a practical variant of the Multi-Robots Task Allocation (MRTA) problem for humanoid robots as multi-humanoid robots’ task allocation (MHTA) problem. In order to evaluate relevant aspects of the MHTA problem, we proposed a robust Multi-Objective Multi-Humanoid Robots Task allocation (MO-MHTA) algorithm with four objectives, namely energy consumption, total tasks’ accomplishment time, robot’s idle time and fairness were optimized simultaneously in an evolutionary framework in MO-MHTA, which address for the first time. MO-MHTA exhibits multi-objective properties in real-world applications for humanoid robots in two phases. In the first phase, the tasks are partitioned in a fair manner with a proposed constraint k-medoid (CKM) algorithm. In the second phase, a new non-dominated sorting genetic algorithm with special genetic operators is applied. Evaluations based on extensive experiments on the newly proposed benchmark instances with three robust multi-objective evolutionary algorithms (MOEAs) are applied. The proposed algorithm achieves favorable results in comparison to six other algorithms. Besides, the proposed algorithm can be seen as benchmark algorithms for real-world MO-MHTA instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Diftler MA, Culbert C, Ambrose RO, Platt R, Bluethmann W (2003) Evolution of the NASA/DARPA robonaut control system. In: Robotics and automation, 2003. Proceedings. ICRA'03. IEEE international conference on, 2003. IEEE, pp 2543–2548. doi:https://doi.org/10.1109/ROBOT.2003.1241975

  2. DeDonato M, Dimitrov V, Du R, Giovacchini R, Knoedler K, Long X, Polido F, Gennert MA, Padır T, Feng S (2015) Human-in-the-loop control of a humanoid robot for disaster response: a report from the DARPA robotics challenge trials. J Field Robot 32(2):275–292. https://doi.org/10.1002/rob.21567

    Article  Google Scholar 

  3. Saeedvand S, Aghdasi HS, Baltes J (2018) Novel lightweight Odometric learning method for humanoid robot localization. Mechatronics 55:38–53

    Article  Google Scholar 

  4. Kohlbrecher S, Romay A, Stumpf A, Gupta A, Von Stryk O, Bacim F, Bowman DA, Goins A, Balasubramanian R, Conner DC (2015) Human-robot teaming for rescue missions: team ViGIR's approach to the 2013 DARPA robotics challenge trials. J Field Robot 32(3):352–377. https://doi.org/10.1002/rob.21558

    Article  Google Scholar 

  5. Feng S, Whitman E, Xinjilefu X, Atkeson CG (2015) Optimization-based full body control for the DARPA robotics challenge. J Field Robot 32(2):293–312. https://doi.org/10.1002/rob.21559

    Article  Google Scholar 

  6. Bhattacharya S, Ghrist R, Kumar V (2014) Multi-robot coverage and exploration on Riemannian manifolds with boundaries. Int J Robot Res 33(1):113–137

    Article  Google Scholar 

  7. Alitappeh RJ, Jeddisaravi K, Guimarães FG (2017) Multi-objective multi-robot deployment in a dynamic environment. Soft Comput 21(21):6481–6497. https://doi.org/10.1007/s00500-016-2207-x

    Article  Google Scholar 

  8. Jose K, Pratihar DK (2016) Task allocation and collision-free path planning of centralized multi-robots system for industrial plant inspection using heuristic methods. Robot Auton Syst 80:34–42. https://doi.org/10.1016/j.robot.2016.02.003

    Article  Google Scholar 

  9. Saeedvand S, Aghdasi HS An energy efficient metaheuristic method for micro robots indoor area coverage problem. In: Computer and knowledge engineering (ICCKE), 2016 6th international conference on, 2016. IEEE, pp 88–93. doi:https://doi.org/10.1109/ICCKE.2016.7802121

  10. Khamis A, Hussein A, Elmogy A (2015) Multi-robot task allocation: a review of the state-of-the-art. In: Cooperative robots and sensor networks 2015. Springer, pp 31–51. doi:https://doi.org/10.1007/978-3-319-18299-5_2

    Chapter  Google Scholar 

  11. Gunn T, Anderson J (2015) Dynamic heterogeneous team formation for robotic urban search and rescue. J Comput Syst Sci 81(3):553–567. https://doi.org/10.1016/j.jcss.2014.11.009

    Article  Google Scholar 

  12. Schillinger P (2017) Simultaneous task allocation and planning for temporal logic goals in heterogeneous multi-robot systems. The international journal of robotics research

  13. Farinelli A, Zanotto E, Pagello E (2017) Advanced approaches for multi-robot coordination in logistic scenarios. Robot Auton Syst 90:34–44. https://doi.org/10.1016/j.robot.2016.08.010

    Article  Google Scholar 

  14. Parker LE (1998) ALLIANCE: an architecture for fault tolerant multirobot cooperation. IEEE Trans Robot Autom 14(2):220–240. https://doi.org/10.1109/70.681242

    Article  MathSciNet  Google Scholar 

  15. Su X, Wang Y, Jia X, Guo L, Ding Z (2018) Two innovative coalition formation models for dynamic task allocation in disaster rescues. J Syst Sci Syst Eng 27(2):215–230. https://doi.org/10.1007/s11518-018-5365-9

    Article  Google Scholar 

  16. Jiang Y (2016) A survey of task allocation and load balancing in distributed systems. IEEE Trans Parallel Distrib Syst 27(2):585–599. https://doi.org/10.1109/TPDS.2015.2407900

    Article  Google Scholar 

  17. Koes M, Nourbakhsh I, Sycara K, Koes M, Sycara K, Nourbakhsh I, Koes M, Nourbakhsh I, Sycara K (2005) Ramchurn SD heterogeneous multirobot coordination with spatial and temporal constraints. In: AAAI: 1292–1297

  18. Kube CR, Bonabeau E (2000) Cooperative transport by ants and robots. Robot Auton Syst 30(1–2):85–101. https://doi.org/10.1016/S0921-8890(99)00066-4

    Article  Google Scholar 

  19. Qian X, Zhang W, Ukkusuri SV, Yang C (2017) Optimal assignment and incentive design in the taxi group ride problem. Transp Res B Methodol 103:208–226. https://doi.org/10.1016/j.trb.2017.03.001

    Article  Google Scholar 

  20. Gupta A, Saini S (2017) On solutions to vehicle routing problems using swarm optimization techniques: a review. In: Advances in Computer and Computational Sciences Springer: 345–354. doi:https://doi.org/10.1007/978-981-10-3770-2_32

    Chapter  Google Scholar 

  21. Trigui S, Cheikhrouhou O, Koubaa A, Baroudi U, Youssef H (2017) FL-MTSP: a fuzzy logic approach to solve the multi-objective multiple traveling salesman problem for multi-robot systems. Soft Comput 21(24):7351–7362. https://doi.org/10.1007/s00500-016-2279-7

    Article  Google Scholar 

  22. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99. https://doi.org/10.1023/A:1022602019183

    Article  Google Scholar 

  23. Karakatič S, Podgorelec V (2015) A survey of genetic algorithms for solving multi depot vehicle routing problem. Appl Soft Comput 27:519–532. https://doi.org/10.1016/j.asoc.2014.11.005

    Article  Google Scholar 

  24. Jeddisaravi K, Alitappeh RJ, Pimenta LCA, Guimaraes FG (2016) Multi-objective approach for robot motion planning in search tasks. Appl Intell:1–17. doi:https://doi.org/10.1007/s10489-015-0754-y

    Article  Google Scholar 

  25. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  26. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601. https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  27. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731. https://doi.org/10.1109/TEVC.2007.892759

    Article  Google Scholar 

  28. Islam MZ, Estivill-Castro V, Rahman MA, Bossomaier T (2018) Combining K-means and a genetic algorithm through a novel arrangement of genetic operators for high quality clustering. Expert Syst Appl 91:402–417. https://doi.org/10.1016/j.eswa.2017.09.005

    Article  Google Scholar 

  29. Cai X, Li Y, Fan Z, Zhang Q (2015) An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Trans Evol Comput 19(4):508–523. https://doi.org/10.1109/TEVC.2014.2350995

    Article  Google Scholar 

  30. Deb K, Padhye N (2014) Enhancing performance of particle swarm optimization through an algorithmic link with genetic algorithms. Comput Optim Appl 57(3):761–794. https://doi.org/10.1007/s10589-013-9605-0

    Article  MathSciNet  MATH  Google Scholar 

  31. Padhye N, Bhardawaj P, Deb K (2013) Improving differential evolution through a unified approach. J Glob Optim 55(4):771–799. https://doi.org/10.1007/s10898-012-9897-0

    Article  MathSciNet  MATH  Google Scholar 

  32. Seada H, Deb K (2015) U-NSGA-III: a unified evolutionary optimization procedure for single, multiple, and many objectives: proof-of-principle results. International conference on evolutionary multi-criterion optimization, . Springer, pp 34–49. doi:https://doi.org/10.1007/978-3-319-15892-1_3

    Google Scholar 

  33. Liu C, Kroll A (2015) Memetic algorithms for optimal task allocation in multi-robot systems for inspection problems with cooperative tasks. Soft Comput 19(3):567–584. https://doi.org/10.1007/s00500-014-1274-0

    Article  Google Scholar 

  34. Bektas T (2006) The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3):209–219. https://doi.org/10.1016/j.omega.2004.10.004

    Article  MathSciNet  Google Scholar 

  35. Li J, Zhou M, Sun Q, Dai X, Yu X (2015) Colored traveling salesman problem. IEEE Trans Cybernet 45(11):2390–2401. https://doi.org/10.1109/TCYB.2014.2371918

    Article  Google Scholar 

  36. Öztürk S, Kuzucuoğlu AE (2015) Optimal bid valuation using path finding for multi-robot task allocation. J Intell Manuf 26(5):1049–1062. https://doi.org/10.1007/s10845-014-0909-4

    Article  Google Scholar 

  37. Toth P, Vigo D (2002) The vehicle routing problem. SIAM

  38. Carter AE, Ragsdale CT (2006) A new approach to solving the multiple traveling salesperson problem using genetic algorithms. Eur J Oper Res 175(1):246–257. https://doi.org/10.1016/j.ejor.2005.04.027

    Article  MathSciNet  MATH  Google Scholar 

  39. Brown EC, Ragsdale CT, Carter AE (2007) A grouping genetic algorithm for the multiple traveling salesperson problem. Int J Inform Technol Decision Making 6(02):333–347. https://doi.org/10.1142/S0219622007002447

    Article  MATH  Google Scholar 

  40. Singh A, Baghel AS (2009) A new grouping genetic algorithm approach to the multiple traveling salesperson problem. Soft Comput 13(1):95–101. https://doi.org/10.1007/s00500-008-0312-1

    Article  Google Scholar 

  41. Banks A, Vincent J, Anyakoha C (2008) A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat Comput 7(1):109–124. https://doi.org/10.1016/j.asoc.2017.12.031

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang J, Zhou Y, Wang Y, Zhang J, Chen CP, Zheng Z (2016) Multiobjective vehicle routing problems with simultaneous delivery and pickup and time windows: formulation, instances, and algorithms. IEEE Trans Cybernet 46(3):582–594. https://doi.org/10.1109/TCYB.2015.2409837

    Article  Google Scholar 

  43. Bolaños R, Echeverry M, Escobar J (2015) A multiobjective non-dominated sorting genetic algorithm (NSGA-II) for the multiple traveling salesman problem. Decision Sci Lett 4(4):559–568. https://doi.org/10.5267/j.dsl.2015.5.003

    Article  Google Scholar 

  44. Wang H-F, Chen Y-Y (2012) A genetic algorithm for the simultaneous delivery and pickup problems with time window. Comput Ind Eng 62(1):84–95. https://doi.org/10.1016/j.cie.2011.08.018

    Article  MathSciNet  Google Scholar 

  45. Wang C, Zhao F, Mu D, Sutherland JW Simulated annealing for a vehicle routing problem with simultaneous pickup-delivery and time windows. In: IFIP international conference on advances in production management systems, 2013. Springer: 170–177. doi:https://doi.org/10.1007/978-3-642-41263-9_21

    Google Scholar 

  46. Bao B, Yang Y, Chen Q, Liu A, Zhao J (2016) Task allocation optimization in collaborative customized product development based on double-population adaptive genetic algorithm. J Intell Manuf 27(5):1097–1110. https://doi.org/10.1007/s10845-014-0937-0

    Article  Google Scholar 

  47. Nunes E, Manner M, Mitiche H, Gini M (2017) A taxonomy for task allocation problems with temporal and ordering constraints. Robot Auton Syst 90:55–70. https://doi.org/10.1016/j.robot.2016.10.008

    Article  Google Scholar 

  48. Brutschy A, Pini G, Pinciroli C, Birattari M, Dorigo M (2014) Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Auton Agent Multi-Agent Syst 28(1):101–125. https://doi.org/10.1007/s10458-012-9212-y

    Article  Google Scholar 

  49. Liu G (2016) Complexity of the deadlock problem for petri nets modeling resource allocation systems. Inf Sci 363:190–197. https://doi.org/10.1016/j.ins.2015.11.025

    Article  Google Scholar 

  50. Snafii N, Abdolmaleki A, Lau N, Reis LP (2015) Development of an omnidirectional walk engine for soccer humanoid robots. Int J Adv Robot Syst 12(12):1–14. https://doi.org/10.5772/61314

    Article  Google Scholar 

  51. Lee K-B, Myung H, Kim J-H (2015) Online multiobjective evolutionary approach for navigation of humanoid robots. IEEE Trans Ind Electron 62(9):5586–5597. https://doi.org/10.1109/TIE.2015.2405901

    Article  Google Scholar 

  52. Martínez PA, Lin X, Castelán M, Casas J, Arechavaleta G (2017) A closed-loop approach for tracking a humanoid robot using particle filtering and depth data. Intell Serv Robot:1–16

  53. Tolani D, Goswami A, Badler NI (2000) Real-time inverse kinematics techniques for anthropomorphic limbs. Graph Model 62(5):353–388. https://doi.org/10.1006/gmod.2000.0528

    Article  MATH  Google Scholar 

  54. Galindo C, Fernández-Madrigal J-A, González J, Saffiotti A (2008) Robot task planning using semantic maps. Robot Auton Syst 56(11):955–966. https://doi.org/10.1016/j.robot.2008.08.007

    Article  Google Scholar 

  55. Kapanoglu M, Alikalfa M, Ozkan M, Yazıcı A, Parlaktuna O (2012) A pattern-based genetic algorithm for multi-robot coverage path planning minimizing completion time. J Intell Manuf 23(4):1035–1045. https://doi.org/10.1007/s10845-010-0404-5

    Article  Google Scholar 

  56. Rouxel Q, Passault G, Hofer L, N’Guyen S, Ly O (2016) Learning the odometry on a small humanoid robot. Paper presented at the IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, May 16–21

  57. Oriolo G, Paolillo A, Rosa L, Vendittelli M (2012) Vision-based Odometric localization for humanoids using a kinematic EKF. Paper presented at the IEEE-RAS international conference on humanoid robots, Business Innovation Center Osaka, Japan

  58. De Cristóforis P, Nitsche M, Krajník T, Pire T, Mejail M (2015) Hybrid vision-based navigation for mobile robots in mixed indoor/outdoor environments. Pattern Recogn Lett 53:118–128

    Article  Google Scholar 

  59. Duchoň F, Babinec A, Kajan M, Beňo P, Florek M, Fico T, Jurišica L (2014) Path planning with modified a star algorithm for a mobile robot. Procedia Eng 96:59–69. https://doi.org/10.1016/j.proeng.2014.12.098

    Article  Google Scholar 

  60. Harabor DD, Grastien A (2011) Online graph pruning for pathfinding on grid maps. AAAI

  61. Kaufman L, Rousseeuw PJ (2009) Finding groups in data: an introduction to cluster analysis, vol 344. John Wiley & Sons

  62. Park H-S, Jun C-H (2009) A simple and fast algorithm for K-medoids clustering. Expert Syst Appl 36(2):3336–3341. https://doi.org/10.1016/j.eswa.2008.01.039

    Article  Google Scholar 

  63. Ng MK (2000) A note on constrained k-means algorithms. Pattern Recogn 33(3):515–519. https://doi.org/10.1016/S0031-3203(99)00057-6

    Article  MathSciNet  Google Scholar 

  64. Coello CAC, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems, vol 5. Springer

  65. Leong W-F, Yen GG (2008) PSO-based multiobjective optimization with dynamic population size and adaptive local archives. IEEE Trans Syst Man Cybernet Part B (Cybernetics) 38(5):1270–1293. https://doi.org/10.1109/TSMCB.2008.925757

    Article  Google Scholar 

  66. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271. https://doi.org/10.1109/4235.797969

    Article  Google Scholar 

  67. Knowles J, Corne D (1999) The pareto archived evolution strategy: a new baseline algorithm for pareto multiobjective optimisation. Evol Comput. CEC 99. Proceedings of the 1999 Congress on, 1999. IEEE, pp 98–105. doi:https://doi.org/10.1109/CEC.1999.781913

  68. Van Veldhuizen DA, Lamont GB (2000) Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol Comput 8 (2):125–147. doi:https://doi.org/10.1162/106365600568158

    Article  Google Scholar 

  69. Jain YK, Bhandare SK (2011) Min max normalization based data perturbation method for privacy protection. Int J Comput Commun Technol 2(8):45–50

    Google Scholar 

  70. Antonio LM, Coello CAC (2017) Coevolutionary multi-objective evolutionary algorithms: a survey of the state-of-the-art. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2017.2767023

    Article  Google Scholar 

  71. Pavai G, Geetha T (2017) A survey on crossover operators. ACM Comput Surv (CSUR) 49(4):72. https://doi.org/10.1145/3009966

    Article  Google Scholar 

  72. Pandey HM, Chaudhary A, Mehrotra D (2014) A comparative review of approaches to prevent premature convergence in GA. Appl Soft Comput 24:1047–1077. https://doi.org/10.1016/j.asoc.2014.08.025

    Article  Google Scholar 

  73. Michalewicz Z (2013) Genetic algorithms+ data structures= evolution programs. Springer Science & Business Media

  74. Pereira J, Averbakh I (2013) The robust set covering problem with interval data. Ann Oper Res 207(1):217–235. https://doi.org/10.1007/s10479-011-0876-5

    Article  MathSciNet  MATH  Google Scholar 

  75. Benchmark instances along with office-like environment map: https://github.com/SaeedSaeedvand/Benchmark-Instances-for-MO-MHTA-.git

  76. Saeedvand S, Jafari M, Alizadeh V, Ranjbaran A, Abbaszadeh M (2017) IRC adult size humanoid robot soccer team description paper 2017. Paper presented at the RoboCup humanoid robot league, Nagoya, Japan

  77. Zhang Q, Zhou A, Jin Y (2008) RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans Evol Comput 12(1):41–63. https://doi.org/10.1109/TEVC.2007.894202

    Article  Google Scholar 

  78. Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications, vol 63. Citeseer

  79. García S, Fernández A, Luengo J, Herrera F (2009) A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput 13(10):959. https://doi.org/10.1007/s00500-008-0392-y

    Article  Google Scholar 

  80. Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56(293):52–64

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was partially funded by the “Chinese Language and Technology Center” and “Higher Education Sprout Project” of National Taiwan Normal University (NTNU), sponsored by the Ministry of Education, Taiwan and also funded partially by the Ministry of Science and Technology, Taiwan, under [Grants No. 107-2221-E-003 -024 -MY3, MOST 107-2634-F-003-001, and MOST 107-2634-F-003-002].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi S. Aghdasi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeedvand, S., Aghdasi, H.S. & Baltes, J. Robust multi-objective multi-humanoid robots task allocation based on novel hybrid metaheuristic algorithm. Appl Intell 49, 4097–4127 (2019). https://doi.org/10.1007/s10489-019-01475-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-019-01475-8

Keywords

Navigation