Skip to main content

Advertisement

Log in

Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The difficulty and complexity of the real-world numerical optimization problems has grown manifold, which demands efficient optimization methods. To date, various metaheuristic approaches have been introduced, but only a few have earned recognition in research community. In this paper, a new metaheuristic algorithm called Archimedes optimization algorithm (AOA) is introduced to solve the optimization problems. AOA is devised with inspirations from an interesting law of physics Archimedes’ Principle. It imitates the principle of buoyant force exerted upward on an object, partially or fully immersed in fluid, is proportional to weight of the displaced fluid. To evaluate performance, the proposed AOA algorithm is tested on CEC’17 test suite and four engineering design problems. The solutions obtained with AOA have outperformed well-known state-of-the-art and recently introduced metaheuristic algorithms such genetic algorithms (GA), particle swarm optimization (PSO), differential evolution variants L-SHADE and LSHADE-EpSin, whale optimization algorithm (WOA), sine-cosine algorithm (SCA), Harris’ hawk optimization (HHO), and equilibrium optimizer (EO). The experimental results suggest that AOA is a high-performance optimization tool with respect to convergence speed and exploration-exploitation balance, as it is effectively applicable for solving complex problems. The source code is currently available for public from: https://www.mathworks.com/matlabcentral/fileexchange/79822-archimedes-optimization-algorithm

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Elaziz MA, Heidari AA, Fujita H, Moayedi H (2020) A competitive chain-based Harris Hawks Optimizer for global optimization and multi-level image thresholding problems. Appl Soft Comput 106347, in press

  2. Taradeh M, Mafarja M, Heidari AA, Faris H, Aljarah I, Mirjalili S, Fujita H (2019) An evolutionary gravitational search-based feature selection. Appl Soft Comput 497:219–239

    Google Scholar 

  3. Houssein EH, Saad MR, Hashim FA, Shaban H, Hassaballah M (2020) Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell 94:103731

    Google Scholar 

  4. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872

    Google Scholar 

  5. Houssein EH, Hosney ME, Oliva D, Mohamed WM, Hassaballah M (2020) A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery. Comput Chem Eng 133:106656

    Google Scholar 

  6. Neggaz N, Houssein EH, Hussain K (2020) An efficient henry gas solubility optimization for feature selection. Exp Syst Appl 113364

  7. Hashim FA, Houssein EH, Hussain K, Mabrouk MS, Al-Atabany W (2020) A modified Henry gas solubility optimization for solving motif discovery problem. Neural Comput Appl 32(14):10759–10771

    Google Scholar 

  8. Hashim F, Mabrouk MS, Al-Atabany W (2017) GWOMF: Grey Wolf Optimization for motif finding. In: 2017 13th international computer engineering conference (ICENCO), pp 141–146

  9. Kar AK (2016) Bio inspired computing—a review of algorithms and scope of applications. Exp Syst Appl 59:20–32

    Google Scholar 

  10. Hussain K, Salleh MNM, Cheng S, Shi Y (2019) Metaheuristic research: a comprehensive survey. Artif Intell Rev 52(4):2191–2233

    Google Scholar 

  11. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    MathSciNet  MATH  Google Scholar 

  12. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95 Proceedings of the sixth international symposium on micro machine and human science, pp 39–43

  13. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–72

    Google Scholar 

  14. Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation, 1999 CEC 99, pp 1470–1477

  15. Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (abc) algorithm and applications. Artif Intell Rev 42(1):21–57

    Google Scholar 

  16. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  17. Zhao W, Wang L (2016) An effective bacterial foraging optimizer for global optimization. Inf Sci 329:719–735

    Google Scholar 

  18. Mirjalili S (2015) Moth-flame optimization algorithm. Knowl-Based Syst 89:228–249

    Google Scholar 

  19. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm. Adv Eng Softw 114:163–191

    Google Scholar 

  20. Mirjalili SM, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Google Scholar 

  21. Liu S -H, Mernik M, Hrnčič D, Črepinšek M (2013) A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting sovova’s mass transfer model. Appl Soft Comput 13(9):3792–3805

    Google Scholar 

  22. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213:267–289

    MATH  Google Scholar 

  23. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    MATH  Google Scholar 

  24. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294

    Google Scholar 

  25. Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: a novel physics-based algorithm. Future Gener Comput Syst 101:646–667

    Google Scholar 

  26. Lam AYS, Li VOK (2010) Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans Evol Comput 14(3):381–399

    Google Scholar 

  27. Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96(96):120–133

    Google Scholar 

  28. Salimi H (2015) Stochastic fractal search. Knowl-Based Syst 75:1–18

    Google Scholar 

  29. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84

    Google Scholar 

  30. Hussain S, Ahmad AI, Mutlag AH (2015) Lightning search algorithm. Appl Soft Comput 36:315–333

    Google Scholar 

  31. Zhao W, Wang L, Zhang Z (2019) Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl-Based Syst 89:283–304

    Google Scholar 

  32. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl-Based Syst 191:105190

    Google Scholar 

  33. Kaveh A, Share MAM, Moslehi M (2013) Magnetic charged system search: a new meta-heuristic algorithm for optimization. Acta Mech 224(1):85–107

    MATH  Google Scholar 

  34. Abedinpourshotorban H, Shamsuddin SM, Beheshti Z, Jawawi DNA (2016) Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm Evol Comput 26:8–22

    Google Scholar 

  35. Javidy B, Hatamlou A, Mirjalili S (2015) Ions motion algorithm for solving optimization problems. Appl Soft Comput 32:72–79

    Google Scholar 

  36. Mavrovouniotis M, Li C, Yang S (2017) A survey of swarm intelligence for dynamic optimization: algorithms and applications. Swarm Evol Comput 33:1–17

    Google Scholar 

  37. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Google Scholar 

  38. Rorres C (2004) Completing book ii of archimedes’s on floating bodies. Math Intell 26(3):32–42

    MathSciNet  MATH  Google Scholar 

  39. Rorres C (2016) Across neighborhood search for numerical optimization. Inf Sci 329:597–618

    Google Scholar 

  40. Cheng S, Shi Y, Qin Q, Zhang Q, Bai R (2014) Population diversity maintenance in brain storm optimization algorithm. J Artif Intell Soft Comput Res 4(2):83–97

    Google Scholar 

  41. Hussain K, Salleh MNM, Cheng S, Shi Y (2018) On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput Appl 31(11):7665–7683

    Google Scholar 

  42. Črepinšek M, Liu S-H, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv 45(3):1–35

    MATH  Google Scholar 

  43. Črepinšek M, Mernik M, Liu S -H (2011) Analysis of exploration and exploitation in evolutionary algorithms by ancestry trees. Int J Innov Comput Appl 3(1):11–19

    MATH  Google Scholar 

  44. Cheng S, Lu H, Lei X, Shi Y (2018) A quarter century of particle swarm optimization. Complex Intell Syst 4(3):227– 239

    Google Scholar 

  45. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110 (1):151–166

    Google Scholar 

  46. Wu G, Mallipeddi R, Suganthan P (2017) Problem definitions and evaluation criteria for the cec 2017 competition on constrained real-parameter optimization, National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore, Technical Report. http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017

  47. Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127

    Google Scholar 

  48. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Google Scholar 

  49. Mezura-Montes E, Coello CAC (2005) Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: Mexican international conference on artificial intelligence, pp 652–662

  50. Kannan B, Kramer SN (1994) An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116(2):405–411

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Halwan University for supporting this research. This research is also partially supported by University of Electronic Science and Technology of China (UESTC) and National Natural Science Foundation of China (NSFC) under Grant No. 61772120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam H. Houssein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Welded beam design problem

$$ \begin{array}{@{}rcl@{}} &&\text{Consider }\mathbf{x}=\left[ {{x}_{1}}{{x}_{2}}{{x}_{3}}{{x}_{4}} \right]=\left[ h l t b \right] \\ &&\text{Minimize } f\left( {\mathbf{x}} \right) = 1.10471{x_{1}^{2}}{{x}_{2}} + 0.04811{{x}_{3}}{{x}_{4}}\left( 14.0 + {{x}_{2}} \right) \\ &&\text{Subject to: } \\ &&{{g}_{1}}\left( {\mathbf{x}} \right)=\tau \left( {\mathbf{x}} \right)-13600\le 0 \\ &&{{g}_{2}}\left( {\mathbf{x}} \right)=\sigma \left( {\mathbf{x}} \right)-30000\le 0 \\ &&{{g}_{3}}\left( {\mathbf{x}} \right)={{x}_{1}}-{{x}_{4}}\le 0 \\ &&{{g}_{4}}\left( {\mathbf{x}} \right)=0.10471\left( {x_{1}^{2}} \right) + 0.04811{{x}_{3}}{{x}_{4}}\left( 14 + {{x}_{2}} \right) - 5.0\le 0 \\ &&{{g}_{6}}\left( {\mathbf{x}} \right)=\delta \left( {\mathbf{x}} \right)-0.25\le 0 \\ &&{{g}_{7}}\left( {\mathbf{x}} \right)=6000-{{p}_{c}}\left( {\mathbf{x}} \right)\le 0 \\ &&\text{where}\\ &&\tau \left( {\mathbf{x}} \right)=\sqrt{\left( {{\tau }^{\prime}} \right)+\left( 2{\tau }'{\tau }^{\prime\prime} \right)\frac{{{x}_{2}}}{2R}+{{\left( {{\tau }^{\prime\prime}} \right)}^{2}}} \\ &&{\tau }^{\prime}=\frac{6000}{\sqrt{2}{{x}_{1}}{{x}_{2}}} \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&{\tau }^{\prime\prime}=\frac{MR}{J} \\ &&M=6000\left( 14+\frac{{{x}_{2}}}{2} \right) \\ &&R=\sqrt{\frac{{x_{2}^{2}}}{4}+{{\left( \frac{{{x}_{1}}+{{x}_{3}}}{2} \right)}^{2}}} \\ &&j=2\left\{ {{x}_{1}}{{x}_{2}}\sqrt{2}\left[ \frac{{x_{2}^{2}}}{12}+{{\left( \frac{{{x}_{1}}+{{x}_{3}}}{2} \right)}^{2}} \right] \right\} \\ &&\sigma \left( {\mathbf{x}} \right)=\frac{504000}{{{x}_{4}}{x_{3}^{2}}} \\ &&\delta \left( {\mathbf{x}} \right)=\frac{65856000}{\left( 30\times {{10}^{6}} \right){{x}_{4}}{x_{3}^{3}}} \\ &&{{p}_{c}}\left( {\mathbf{x}} \right)=\frac{4.013\left( 30\times {{10}^{6}} \right)\sqrt{\frac{{x_{3}^{2}}{x_{4}^{6}}}{36}}}{196}\left( 1-\frac{{{x}_{3}}\sqrt{\frac{30\times {{10}^{6}}}{4\left( 12\times {{10}^{6}} \right)}}}{28} \right) \\ &&\text{with } 0.1\le {{x}_{1}},{{x}_{4}}\le 2.0 and 0.1\le {{x}_{2}},{{x}_{3}}\le 10.0 \end{array} $$

Appendix B: Tension/compression spring design problem

$$ \begin{array}{@{}rcl@{}} &&\text{Consider:}\\ &&\mathbf{x}=\left[ {{x}_{1}}{{x}_{2}}{{x}_{3}} \right]=\left[ d D N \right] \\ &&\text{Min} f\left( {\mathbf{x}} \right)=\left( {{x}_{3}}+2 \right){{x}_{2}}{x_{1}^{2}} \\ &&\text{subject to: } \\ &&{{g}_{1}}\left( {\mathbf{x}} \right)=1-\frac{{x_{2}^{3}}{{x}_{3}}}{71785{x_{1}^{4}}}\le 0 \\ &&{{g}_{2}}\left( {\mathbf{x}} \right)=\frac{4{x_{2}^{2}}-{{x}_{1}}{{x}_{2}}}{12566\left( {{x}_{2}}{x_{1}^{3}}-{x_{1}^{4}} \right)}+\frac{1}{5108{x_{1}^{2}}}-1\le 0 \\ &&{{g}_{3}}\left( {\mathbf{x}} \right)=1-\frac{140.45{{x}_{1}}}{{x_{2}^{2}}{{x}_{3}}}\le 0 \\ &&{{g}_{4}}\left( {\mathbf{x}} \right)=\frac{{{x}_{1}}+{{x}_{2}}}{1.5}-1\le 0 \\ &&\text{with } 0.05\!\le\! {{x}_{1}} \!\le\! 2.0,0.25 \!\le\! {{x}_{2}} \!\le\! 1.3,and 2.0 \!\le\! {{x}_{3}} \!\le\! 15.0 \end{array} $$

Appendix C: Speed reducer design problem

$$ \begin{array}{@{}rcl@{}} &&\!\!\!\text{Min}f\left( {\mathbf{x}} \right) = 0.7854{{x}_{1}}{x_{2}^{2}}\left( 3.3333{x_{3}^{2}} + 14.9334{{x}_{3}} - 43.0934 \right)\\ &&-1.508{{x}_{1}} \left( {x_{6}^{2}}+{x_{7}^{2}} \right)+7.4777\left( {x_{6}^{3}}+{x_{7}^{3}} \right)+0.7854\\ &&\left( {{x}_{4}}{x_{6}^{2}}+{{x}_{5}}{x_{7}^{2}} \right) \\ &&\text{Subject to: } \\ &&{{g}_{1}}\left( {\mathbf{x}} \right)=\frac{27}{{{x}_{1}}{x_{2}^{2}}{{x}_{3}}}-1\le 0 \\ \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&{{g}_{2}}\left( {\mathbf{x}} \right)=\frac{397.5}{{{x}_{1}}{x_{2}^{2}}{{x}_{3}}}-1\le 0 \\ &&{{g}_{3}}\left( {\mathbf{x}} \right)=\frac{1.93{x_{4}^{3}}}{{{x}_{2}}{{x}_{3}}{x_{6}^{4}}}-1 \\ &&{{g}_{4}}\left( {\mathbf{x}} \right)=\frac{1.93{x_{5}^{3}}}{{{x}_{2}}{{x}_{3}}{x_{7}^{4}}}-1\le 0 \\ &&{{g}_{5}}\left( {\mathbf{x}} \right)=\frac{1}{110{x_{6}^{3}}}\sqrt{{{\left( \frac{745{{x}_{4}}}{{{x}_{2}}{{x}_{3}}} \right)}^{2}}+16.9\times {{10}^{6}}}-1\le 0 \\ &&{{g}_{6}}\left( {\mathbf{x}} \right)=\frac{1}{85{x_{7}^{3}}}\sqrt{{{\left( \frac{745{{x}_{5}}}{{{x}_{2}}{{x}_{3}}} \right)}^{2}}+157.5\times {{10}^{6}}}-1\le 0 \\ &&{{g}_{7}}\left( {\mathbf{x}} \right)=\frac{{{x}_{2}}{{x}_{3}}}{40}-1\le 0 \\ &&{{g}_{8}}\left( {\mathbf{x}} \right)=\frac{5{{x}_{2}}}{{{x}_{1}}}-1\le 0 \\ &&{{g}_{9}}\left( {\mathbf{x}} \right)=\frac{{{x}_{1}}}{12{{x}_{2}}}-1\le 0 \\ &&{{g}_{10}}\left( {\mathbf{x}} \right)=\frac{1.5{{x}_{6}}+1.9}{x4}-1\le 0 \\ &&{{g}_{11}}\left( {\mathbf{x}} \right)=\frac{1.1{{x}_{7}}+1.9}{{{x}_{5}}}-1\le 0 \end{array} $$

with 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9,and5 ≤ x7 ≤ 5.5

Appendix D: Pressure vessel design problem

$$ \begin{array}{@{}rcl@{}} &&\text{Min}f(x)=0.6224{{x}_{1}}{{x}_{3}}{{x}_{4}}+1.7781{{x}_{2}}{x_{3}^{2}}+3.1661{x_{1}^{2}}{{x}_{4}}\\ &&+19.84{x_{1}^{2}}{{x}_{3}} \\ &&\text{Subject to: }\\ &&{{g}_{1}}(x)=-{{x}_{1}}+0.0193x \\ &&{{g}_{2}}(x)=-{{x}_{2}}+0.00954{{x}_{3}} \le 0 \\ &&{{g}_{3}}(x)=-\pi {x_{3}^{2}}{{x}_{4}}-(4/3)\pi {x_{3}^{3}}+1,296,000\le 0 \\ &&{{g}_{4}}(x)={{x}_{4}}-240\le 0 \\ &&0\le {{x}_{i}}\le 100, i=1,2 \\ &&10\le {{x}_{i}}\le 200, i=3,4 \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashim, F.A., Hussain, K., Houssein, E.H. et al. Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell 51, 1531–1551 (2021). https://doi.org/10.1007/s10489-020-01893-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-01893-z

Keywords

Navigation