Skip to main content
Log in

A multiobjective multiperiod mean-semientropy-skewness model for uncertain portfolio selection

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Due to the complexity of the financial market, security returns are sometimes expressed by expert estimates rather than historical data. In this paper, we deal with a multiobjective multiperiod portfolio selection problem based on uncertainty theory. We propose a new uncertain multiobjective multiperiod mean-semisentropy-skewness portfolio optimization model, in which uncertain semi-entropy is used to quantify the downside risk. To be more realistic, several constraints are also considered, such as the transaction costs, cardinality, liquidity, budget, and bound constraint. Moreover, a novel hybrid technique, called the MFA-SOS algorithm, which combines the features of the firefly algorithm (FA) and symbiotic organism search algorithm (SOS) is designed to solve the proposed model. Finally, a numerical example is given to illustrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Markowitz H (1952) Portfolio selection. J Finance 7(1):77–91

    Google Scholar 

  2. Sharpe WF (1964) Capital asset prices: a theory of market equilibrium under conditions of risk. J Finance 19(3):425–442

    Google Scholar 

  3. Atsushi Y (1996) The mean-variance approach to portfolio optimization subject to transaction costs. J Oper Res Soc Jpn 19(1):425–442

    MathSciNet  MATH  Google Scholar 

  4. Markowitz H (1959) Portfolio selection: efficient diversification of investments. Wiley, New York

    Google Scholar 

  5. Konno H, Yamazaki H (1991) Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Manage Sci 37(5):519–531

    Article  Google Scholar 

  6. Jorion P (1996) Risk2: Measuring the risk in value at risk. Financial Anal J 52(6):47–56

    Article  Google Scholar 

  7. Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2 (3):1071–1074

    Article  Google Scholar 

  8. Philippatos GC, Wilson CJ (1972) Entropy, market risk, and the selection of efficient portfolios. Appl Econ 4(3):209–220

    Article  Google Scholar 

  9. Nawrocki DN, Harding WH (1986) State-value weighted entropy as a measure of investment risk. Appl Econ 18(4):411–419

    Article  Google Scholar 

  10. Simonelli MR (2005) Indeterminacy in portfolio selection. Eur J Oper Res 163(1):170–176

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhou JD, Li X, Pedrycz W (2016) Mean-semi-entropy models of fuzzy portfolio selection. IEEE Trans Fuzzy Syst 24(6):1627–1636

    Article  Google Scholar 

  12. Chen W, Wang Y, Mehlawat MK (2018) A hybrid FA-SA algorithm for fuzzy portfolio selection with transaction costs. Ann Oper Res 269:129–147

    Article  MathSciNet  MATH  Google Scholar 

  13. Mansour N, Cherif MS, Abdelfattah W (2019) Multi-objective imprecise programming for financial portfolio selection with fuzzy returns. Expert Syst Appl 138:112810

    Article  Google Scholar 

  14. zhou J, Li X (2020) Mean-semi-entropy portfolio adjusting model with transaction costs. J Data Inf Manag 2:121–130

    Article  Google Scholar 

  15. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  16. Liu BD (2007) Uncertainty theory, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  17. Qin ZF (2015) Mean-variance model for portfolio optimization problem in the simultaneous presence of random and uncertain returns. Eur J Oper Res 245(2):480–488

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu BD (2010) Uncertainty theory: a branch of mathematics for modeling human uncertainty. Springer, Berlin

    Book  Google Scholar 

  19. Zhai J, Bai M (2018) Mean-risk model for uncertain portfolio selection with background risk. J Comput Appl Math 330:59–69

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen W, Wang Y, Gupta P, Mehlawat MK (2018) A novel hybrid heuristic algorithm for a new uncertain mean ł́cvarianceł́cskewness portfolio selection model with real constraints. Appl Intell 48 (9):2996–3018

    Article  Google Scholar 

  21. Wang XT, Huang XX (2019) A risk index to model uncertain portfolio investment with options. Econ Model 80:284–293

    Article  Google Scholar 

  22. Li B, Sun YF, Aw G, Teo KL (2019) Uncertain portfolio optimization problem under a minimax risk measure. Appl Math Model 76:274–281

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang XX, Yang TT (2020) How does background risk affect portfolio choice: an analysis based on uncertain mean-variance model with background risk. J Bank Financ 111:105726

    Article  Google Scholar 

  24. Huang XX, Qiao L (2012) A risk index model for multi-period uncertain portfolio selection. Inf Sci 217:108–116

    Article  MathSciNet  MATH  Google Scholar 

  25. Li B, Zhu Y, Sun Y, Aw G, Teo KL (2018) Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint. Appl Math Model 56:539–550

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen W, Li DD, Liu YJ (2018) A novel hybrid ICA-FA algorithm for multiperiod uncertain portfolio optimization model based on multiple criteria. IEEE Trans Fuzzy Syst 27(5):1023–1036

    Article  Google Scholar 

  27. Zhang P (2019) Multiperiod mean absolute deviation uncertain portfolio selection with real constraints. Soft Comput 23(13):5081–5098

    Article  MATH  Google Scholar 

  28. Chen W, Li DD, Lu S, Liu WY (2019) Multi-period mean-semivariance portfolio optimization based on uncertain measure. Soft Comput 23(15):6231–6247

    Article  MATH  Google Scholar 

  29. Chang TJ, Meade N, Beasley JE, et al. (2000) Heuristics for cardinality constrained portfolio optimisation. Comput Oper Res 27:1271–1302

    Article  MATH  Google Scholar 

  30. Deng GF, Lin WT, Lo CC (2012) Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization. Expert Syst Appl 39(4):4558–4566

    Article  Google Scholar 

  31. Gong DW, Han YY, Sun JY (2018) A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop scheduling problems. Knowl Based Syst 148:115–130

    Article  Google Scholar 

  32. Gong DW, Sun J, Ji XF (2013) Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems. Inf Sci 233:141–161

    Article  MathSciNet  MATH  Google Scholar 

  33. Gong DW, Xu B, Zhang Y, Guo YN, Yang SX (2020) A similarity-based cooperative co-evolutionary algorithm for dynamic interval multiobjective optimization problems. IEEE Trans Evol Comput 24 (1):142–156

    Article  Google Scholar 

  34. Xu B, Gong DW, Guo YN, Rong M (2018) Environment sensitivity-based cooperative co-evolutionary algorithms for dynamic multi-objective optimization. IEEE/ACM Trans Comput Biol Bioinform 15 (6):1877–1890

    Article  Google Scholar 

  35. Zhang Y, Gong DW, Ding ZH (2011) Handling multi-objective optimization problems with a multi-swarm cooperative particle swarm optimizer. Expert Syst Appl 38(11):13933–13941

    Google Scholar 

  36. Wang B, Li Y, Wang S, Watada J (2018) A multi-objective portfolio selection model with fuzzy value-at-risk ratio. IEEE Trans Fuzzy Syst 26(6):3673–3687

    Article  Google Scholar 

  37. Chen W, Xu W (2019) A hybrid multiobjective bat algorithm for fuzzy portfolio optimization with real-world constraints. Int J Fuzzy Syst 21(1):291–307

    Article  MathSciNet  Google Scholar 

  38. Silva YLT, Herthel AB, Subramanian A (2019) A multi-objective evolutionary algorithm for a class of mean-variance portfolio selection problems. Expert Syst Appl 133:225–241

    Article  Google Scholar 

  39. Kaucic M (2019) Equity portfolio management with cardinality constraints and risk parity control using multi-objective particle swarm optimization. Comput Oper Res 109:300–316

    Article  MathSciNet  MATH  Google Scholar 

  40. Liagkouras K (2019) A new three-dimensional encoding multiobjective evolutionary algorithm with application to the portfolio optimization problem. Knowl Based Syst 163:186–203

    Article  Google Scholar 

  41. Yang XS (2008) Nature-inspired Metaheuristic algorithms. Luniver Press, UK

    Google Scholar 

  42. Fan BB, Yang WW, Zhang ZF (2019) Solving the two-stage hybrid flow shop scheduling problem based on mutant firefly algorithm. J Ambient Intell Humaniz Comput 10(3):979– 990

    Article  Google Scholar 

  43. Wang CH, Nguyen TT, Pan JS, Dao TK (2017) An optimization approach for potential power generator outputs based on parallelized firefly algorithm. In: Proceeding of the twelfth international conference on intelligent information hiding and multimedia signal processing, pp 297–306

  44. Yang XS (2013) Multiobjective firefly algorithm for continuous optimization. Eng Comput 29 (2):175–184

    Article  Google Scholar 

  45. Marichelvam MK, Prabaharan T, Yang XS (2014) A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems. IEEE Trans Evol Comput 18(2):301–305

    Article  Google Scholar 

  46. Karthikeyan S, Asokan P, Nickolas S, Page T (2015) A hybrid discrete firefly algorithm for solving Multi-Objective flexible job shop scheduling problems. Int J Bio-Inspir Com 7(6):386–401

    Article  Google Scholar 

  47. Hidalgo-Paniagua A, Vega-rodríguez MA, Ferruz J, Pavón N (2017) Solving the multi-objective path planning problem in mobile robotics with a firefly-based approach. Soft Comput 21:949–964

    Article  Google Scholar 

  48. Bozorg-Haddad O, Garousi-Nejad I, Loáiciga H A (2017) Extended multi-objective firefly algorithm for hydropower energy generation. J Hydroinformatics 19(5):734–751

    Article  Google Scholar 

  49. Nguyen TT, Pan JS, Chu SC, Roddick JF, Dao TK (2016) Optimization localization in wireless sensor network based on multi-objective firefly algorithm. JNI 1(4):130–138

    Google Scholar 

  50. Lu S, Zhang N, Qiu Y, Gao Y (2019) A multi-period regret minimization model for uncertain portfolio selection with bankruptcy constraint. J Intell Fuzzy Syst 37(6):8417–8439

    Article  Google Scholar 

  51. Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112

    Article  Google Scholar 

  52. Chu SC, Du ZG, Pan JS (2020) Symbiotic organism search algorithm with multi-group quantum-behavior communication scheme applied in wireless sensor networks. Appl Sci 10(3):930

    Article  Google Scholar 

  53. Kumar S, Tejani GG, Mirjalili S (2019) Modified symbiotic organisms search for structural optimization. Eng Comput 35(4):1269–1296

    Article  Google Scholar 

  54. Tran DH, Cheng MY, Prayogo D (2016) A novel multiple objective symbiotic organisms search (MOSOS) for time–cost–labor utilization tradeoff problem. Knowl Based Syst 94:132–145

    Article  Google Scholar 

  55. Tejani GG, Pholdee N, Bureerat S, Prayogo D (2018) Multiobjective adaptive symbiotic organisms search for truss optimization problems. Knowl Based Syst 161:398–414

    Article  Google Scholar 

  56. Abdullahi M, Ngadi MA, Dishing SI, Ahmad BI, et al. (2019) An efficient symbiotic organisms search algorithm with chaotic optimization strategy for multi-objective task scheduling problems in cloud computing environment. J Netw Comput Appl 133:60–74

    Article  Google Scholar 

  57. Tejani GG, Pholdee N, Bureerat S, Prayogo D, Gandomi AH (2019) Structural optimization using multi-objective modified adaptive symbiotic organisms search. Expert Syst Appl 125:425–441

    Article  Google Scholar 

  58. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  59. Chen W, Wang Y, Zhang J, Lu S (2017) Uncertain portfolio selection with high-order moments. J Intell Fuzzy Syst 33(3):1397–1411

    Article  MATH  Google Scholar 

  60. Markowitz HM, Usmen N (1996) The likelihood of various stock market return distributions, part 2: empirical results. J Risk Uncertainty 13:221–247

    Article  MATH  Google Scholar 

  61. Scott RC, Horvath PA (1980) On the direction of preference for moments of higher order than the variance. J Finance 35(4):915–919

    Article  Google Scholar 

  62. Sun Q, Yan YX (2003) Skewness persistence with optimal portfolio selection. J Bank Financ 27(6):1111–1121

    Article  Google Scholar 

  63. Amihud Y (2002) Illiquidity and stock returns: cross-section and time-series effects. J Financial Mark 5(1):31–56

    Article  Google Scholar 

  64. Yelghi A, Köse C (2018) A modified firefly algorithm for global minimum optimization. Appl Soft Comput 62:29–44

    Article  Google Scholar 

  65. Zhang J, Teng YF, Chen W (2019) Support vector regression with modified firefly algorithm for stock price forecasting. Appl Intell 49(5):1658–1674

    Article  Google Scholar 

  66. Devaney R (2018) An introduction to chaotic dynamical systems. CRC Press

  67. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  68. Bacanin N, Tuba M (2014) Firefly algorithm for cardinality constrained mean-variance portfolio optimization problem with entropy diversity constraint. Sci World J 2014:721521

    Article  Google Scholar 

  69. Pouya AR, Solimanpur M, Rezaee MJ (2016) Solving multi-objective portfolio optimization problem using invasive weed optimization. Swarm Evol Comput 28:42–57

    Article  Google Scholar 

  70. Jin X, Chen N, Yuan Y (2019) Multi-period and tri-objective uncertain portfolio selection model: a behavioral approach. North Am J Econ Finance 47:492–504

    Article  Google Scholar 

  71. Zhang QF, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  72. Corne DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II: Region-based selection in evolutionary multiobjective optimization. In: Proceedings of the genetic and evolutionary computation conference (GECCO), pp 283–290

  73. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  74. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Article  Google Scholar 

  75. Pan WT (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst 26(26):69–74

    Article  Google Scholar 

  76. Van DA, Gary V, Lamont B (1999) Multiobjective evolutionary algorithm research: a history and analysis. Evol Comput 8(2):125–147

    Google Scholar 

  77. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: Empirical results. Evol Comput 8(2):173–195

    Article  Google Scholar 

  78. Schott JR (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. Cell Immunol 37:1–13

    Google Scholar 

  79. Chen W, Xu HL, Jia L, Gao Y (2020) A machine learning model for Bitcoin exchange rate prediction using economic and technology determinants. Int J Forecast. https://doi.org/10.1016/j.ijforecast.2020.02.008

  80. Jiang M, Jia L, Chen Z, Chen w (2020) The two-stage machine learning ensemble models for stock price prediction by combining mode decomposition, extreme learning machine and improved harmony search algorithm. Ann Oper Res. https://doi.org/10.1007/s10479-020-03690-w

Download references

Acknowledgements

This research was supported by the Young Academic Innovation Team of Capital University of Economics and Business of China (No. QNTD202002), the Humanity and Social Science Foundation of Ministry of Education of China (No. 19YJAZH005), and the special fund of basic scientific research business fees of Beijing Municipal University of Capital University of Economics and Business (No. XRZ2020016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifen Jia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Zhang, N. & Jia, L. A multiobjective multiperiod mean-semientropy-skewness model for uncertain portfolio selection. Appl Intell 51, 5233–5258 (2021). https://doi.org/10.1007/s10489-020-02079-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-02079-3

Keywords

Navigation