Skip to main content

Advertisement

Log in

Adaptive channel and multiscale spatial context network for breast mass segmentation in full-field mammograms

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Breast cancer is currently the second most fatal cancer in women, but timely diagnosis and treatment can reduce its mortality. Breast masses are the most obvious means of cancer identification, and thus, accurate segmentation of masses is critical. In contrast to mass-centered patch segmentation, accurate segmentation of breast masses in full-field mammograms is always a challenging topic because of the extremely low signal-to-noise ratio and the uncertainty with respect to the shape, size, and location of the mass. In this study, we propose a novel adaptive channel and multiscale spatial context network for breast mass segmentation in full-field mammograms. A standard encoder-decoder structure is employed, and an elaborate adaptive channel and multiscale spatial context module (ACMSC module) is embedded in a multilevel manner in our network for accurate mass segmentation. The proposed ACMSC module utilizes the self-attention mechanism to adaptively capture discriminative contextual information among channel and spatial dimensions.The multilevel embedding of the ACMSC module enables the network to learn distinguishing features on multiple scales of feature maps. Our proposed model is evaluated on two public datasets, CBIS-DDSM and INbreast. The experimental results show that by adaptively capturing the context of the channel and spatial dimensions, our model can effectively remove false positives, predict difficult samples and achieve state-of-the-art results, with Dice coefficients of 82.81% for CBIS-DDSM and 84.11% for INbreast, respectively. We hope that our work will contribute to the CAD system for breast cancer diagnosis and ultimately improve clinical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Waks AG, Winer EP (2019) Breast cancer treatment: a review. Jama 321(3):288–300. https://doi.org/10.1001/jama.2018.19323

    Article  Google Scholar 

  2. Akram M, Iqbal M, Daniyal M, Khan AU (2017) Awareness and current knowledge of breast cancer. Biol Res 50(1):33. https://doi.org/10.1186/s40659-017-0140-9

    Article  Google Scholar 

  3. Li T, Mello-Thoms C, Brennan PC (2016) Descriptive epidemiology of breast cancer in china: incidence, mortality, survival and prevalence. Breast Cancer Res Treat 159(3):395–406. https://doi.org/10.1007/s10549-016-3947-0

    Article  Google Scholar 

  4. Ginsburg O, Yip C-H, Brooks A, Cabanes A, Caleffi M, Dunstan Yataco JA, Gyawali B, McCormack V, McLaughlin de Anderson M, Mehrotra R et al (2020) Breast cancer early detection: a phased approach to implementation. Cancer 126:2379–2393. https://doi.org/10.1002/cncr.32887

    Article  Google Scholar 

  5. Peng J, Sengupta S, Jordan VC (2009) Potential of selective estrogen receptor modulators as treatments and preventives of breast cancer. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 9(5):481–499. https://doi.org/10.2174/187152009788451833

    Google Scholar 

  6. Løberg M, Lousdal ML, Bretthauer M, Kalager M (2015) Benefits and harms of mammography screening. Breast Cancer Res 17(1):63. https://doi.org/10.1186/s13058-015-0525-z

    Article  Google Scholar 

  7. Yassin NI, Omran S, El Houby EM, Allam H (2018) Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review. Comput Methods Programs Biomed 156:25–45. https://doi.org/10.1016/j.cmpb.2017.12.012

    Article  Google Scholar 

  8. Giger ML, Karssemeijer N, Schnabel JA (2013) Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer. Ann Rev Biomed Eng 15:327–357. https://doi.org/10.1146/annurev-bioeng-071812-152416

    Article  Google Scholar 

  9. Welch HG, Prorok PC, O’Malley AJ, Kramer BS (2016) Breast-cancer tumor size, overdiagnosis, and mammography screening effectiveness. N Engl J Med 375(15):1438–1447. https://doi.org/10.1056/NEJMoa1600249

    Article  Google Scholar 

  10. Chen J, Chen L, Wang S, Chen P (2020) A novel multi-scale adversarial networks for precise segmentation of x-ray breast mass. IEEE Access 8 :103772–103781. https://doi.org/10.1109/ACCESS.2020.2999198

    Article  Google Scholar 

  11. Shen T, Gou C, Wang J, Wang F-Y (2019) Simultaneous segmentation and classification of mass region from mammograms using a mixed-supervision guided deep model. IEEE Signal Process Lett 27:196–200. https://doi.org/10.1109/LSP.2019.2963151

    Article  Google Scholar 

  12. Zeiser FA, da Costa CA, Zonta T, Marques NM, Roehe AV, Moreno M, da Rosa Righi R (2020) Segmentation of masses on mammograms using data augmentation and deep learning. J Digit Imaging 33:1–11. https://doi.org/10.1007/s10278-020-00330-4

  13. Dhungel N, Carneiro G, Bradley AP (2017) A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med Image Anals 37:114–128. https://doi.org/10.1016/j.media.2017.01.009

    Article  Google Scholar 

  14. Kim ST, Lee J-H, Lee H, Ro YM (2018) Visually interpretable deep network for diagnosis of breast masses on mammograms. Phys Med Biol 63(23):235025. https://doi.org/10.1088/1361-6560/aaef0a

    Article  Google Scholar 

  15. Sarkar PR, Prabhakar P, Mishra D, Subrahmanyam G (2019) Towards automated breast mass classification using deep learning framework. In: 2019 IEEE international conference on data science and advanced analytics, DSAA, IEEE, pp 453–462. https://doi.org/10.1109/DSAA.2019.00060

  16. Wang R, Ma Y, Sun W, Guo Y, Wang W, Qi Y, Gong X (2019) Multi-level nested pyramid network for mass segmentation in mammograms. Neurocomputing 363:313–320. https://doi.org/10.1016/j.neucom.2019.06.045

    Article  Google Scholar 

  17. Panayides AS, Amini A, Filipovic ND, Sharma A, Tsaftaris SA, Young A, Foran D, Do N, Golemati S, Kurc T et al (2020) Ai in medical imaging informatics: Current challenges and future directions. IEEE J Biomed Health Inform 24(7):1837–1857. https://doi.org/10.1109/JBHI.2020.2991043

    Article  Google Scholar 

  18. Ravì D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang G-Z (2016) Deep learning for health informatics. IEEE J Biomed Health Inform 21(1):4–21. https://doi.org/10.1109/JBHI.2016.2636665

    Article  Google Scholar 

  19. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

  20. Reza SM, Bradley D, Aiosa N, Castro M, Lee JH, Lee B. -Y., Bennett RS, Hensley LE, Cong Y, Johnson R et al (2020) Deep learning for automated liver segmentation to aid in the study of infectious diseases in nonhuman primates. Academic Radiology

  21. Abraham N, Khan NM (2019) A novel focal tversky loss function with improved attention u-net for lesion segmentation. In: 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019), IEEE, pp 683–687. https://doi.org/10.1109/ISBI.2019.8759329

  22. Sinha A, Dolz J (2020) Multi-scale self-guided attention for medical image segmentation. IEEE Journal of Biomedical and Health Informatics. https://doi.org/10.1109/JBHI.2020.2986926

  23. Gu Z, Cheng J, Fu H, Zhou K, Hao H, Zhao Y, Zhang T, Gao S, Liu J (2019) Ce-net: Context encoder network for 2d medical image segmentation. IEEE Trans Medi Imaging 38 (10):2281–2292. https://doi.org/10.1109/TMI.2019.2903562

    Article  Google Scholar 

  24. Roy AG, Navab N, Wachinger C (2018) Recalibrating fully convolutional networks with spatial and channel “squeeze and excitation” blocks. IEEE Trans Med Imaging 38(2):540–549. https://doi.org/10.1109/TMI.2018.2867261

    Article  Google Scholar 

  25. Gao X, Zhang Z, Mu T, Zhang X, Cui C, Wang M (2020 ) Self-attention driven adversarial similarity learning network, Pattern Recognition 105:107331. https://doi.org/10.1016/j.patcog.2020.107331

  26. Wang Z, Zou N, Shen D, Ji S (2020) Non-local u-nets for biomedical image segmentation. In: AAAI, pp 6315–6322

  27. Shelhamer E, Long J, Darrell T (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640. https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  28. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848. https://doi.org/10.1109/TPAMI.2017.2699184

    Article  Google Scholar 

  29. Liu C, Chen L, Schroff F, Adam H, Hua W, Yuille AL, Fei-Fei L (2019) Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation. In: 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 82–92. https://doi.org/10.1109/CVPR.2019.00017

  30. Cheng D, Meng G, Xiang S, Pan C (2017) Fusionnet: Edge aware deep convolutional networks for semantic segmentation of remote sensing harbor images. IEEE J Sel Top Appl Earth Obs Remote Sens 10(12):5769–5783. https://doi.org/10.1109/JSTARS.2017.2747599

    Article  Google Scholar 

  31. Peng C, Zhang X, Yu G, Luo G, Sun J (2017) Large kernel matters–improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4353–4361. arXiv:1703.02719

  32. Xu B, Ye H, Zheng Y, Wang H, Luwang T, Jiang YG (2019) Dense dilated network for video action recognition. IEEE Trans Image Process 28(10):4941–4953. https://doi.org/10.1109/TIP.2019.2917283

    Article  MathSciNet  Google Scholar 

  33. Zhang Z, Liang X, Dong X, Xie Y, Cao G (2018) A sparse-view ct reconstruction method based on combination of densenet and deconvolution. IEEE Trans Med Imaging 37(6):1407–1417. https://doi.org/10.1109/TMI.2018.2823338

    Article  Google Scholar 

  34. He J, Deng Z, Zhou L, Wang Y, Qiao Y (2019) Adaptive pyramid context network for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7519–7528. https://doi.org/10.1109/CVPR.2019.00770

  35. Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H (2018) Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV), pp 801–818

  36. Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2881–2890. https://doi.org/10.1109/CVPR.2017.660

  37. Zhao H, Zhang Y, Liu S, Shi J, Change Loy C, Lin D, Jia J (2018) Psanet: Point-wise spatial attention network for scene parsing. In: Proceedings of the European conference on computer vision (ECCV), pp 267–283. https://doi.org/10.1007/978-3-030-01240-3_17

  38. Fu J, Liu J, Tian H, Li Y, Bao Y, Fang Z, Lu H (2019) Dual attention network for scene segmentation. In: Proceedings of the IEEE conference on computer vision and pattern7 recognition, pp 3146–3154. https://doi.org/10.1109/CVPR.2019.00326

  39. Chen W, Zhu X, Sun R, He J, Li R, Shen X, Yu B (2020) Tensor low-rank reconstruction for semantic segmentation. In: European conference on computer vision, Springer, pp. 52–69

  40. Ravitha Rajalakshmi N, Vidhyapriya R, Elango N, Ramesh N (2020) Deeply supervised u-net for mass segmentation in digital mammograms, International Journal of Imaging Systems and Technology. https://doi.org/10.1002/ima.22516Ra

  41. Sun H, Li C, Liu B, Liu Z, Wang M, Zheng H, Feng DD, Wang S (2020) Aunet: Attention-guided dense-upsampling networks for breast mass segmentation in whole mammograms. Phys Med Biol 65(5):055005. https://doi.org/10.1088/1361-6560/ab5745

    Article  Google Scholar 

  42. Hai J, Qiao K, Chen J, Tan H, Xu J, Zeng L, Shi D, Yan B (2019) Fully convolutional densenet with multiscale context for automated breast tumor segmentation. Journal of Healthcare Engineering 2019. https://doi.org/10.1155/2019/8415485

  43. Li S, Dong M, Du G, Mu X (2019) Attention dense-u-net for automatic breast mass segmentation in digital mammogram. IEEE Access 7:59037–59047. https://doi.org/10.1109/ACCESS.2019.2914873

    Article  Google Scholar 

  44. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  45. Wu M, Zhang C, Liu J, Zhou L, Li X (2019) Towards accurate high resolution satellite image semantic segmentation. IEEE Access 7:55609–55619. https://doi.org/10.1109/ACCESS.2019.2913442

    Article  Google Scholar 

  46. Liang X, Zhang J, Zhuo L, Li Y, Tian Q (2020) Small object detection in unmanned aerial vehicle images using feature fusion and scaling-based single shot detector with spatial context analysis. IEEE Trans Circuits Syst Video Technol 30(6):1758–1770. https://doi.org/10.1109/TCSVT.2019.2905881

    Article  Google Scholar 

  47. Wang L, Wang C, Sun Z, Chen S (2020) An improved dice loss for pneumothorax segmentation by mining the information of negative areas. IEEE Access 8:167939–167949. https://doi.org/10.1109/ACCESS.2020.3020475

    Article  Google Scholar 

  48. Wang G, Liu X, Li C, Xu Z, Ruan J, Zhu H, Meng T, Li K, Huang N, Zhang S (2020) A noise-robust framework for automatic segmentation of covid-19 pneumonia lesions from ct images. IEEE Trans Med Imaging 39(8):2653–2663. https://doi.org/10.1109/TMI.2020.3000314

    Article  Google Scholar 

  49. Zhu W, Huang Y, Tang H, Qian Z, Du N, Fan W, Xie X (2018) Anatomynet: Deep 3d squeeze-and-excitation u-nets for fast and fully automated whole-volume anatomical segmentation, bioRxiv 392969 https://doi.org/10.1101/392969

  50. Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS (2012) Inbreast: toward a full-field digital mammographic database. Acad Radiol 19(2):236–248. https://doi.org/10.1016/j.acra.2011.09.014

    Article  Google Scholar 

  51. Lee RS, Gimenez F, Hoogi A, Miyake KK, Gorovoy M, Rubin DL (2017) A curated mammography data set for use in computer-aided detection and diagnosis research. Scient Data 4:170177. https://doi.org/10.1038/sdata.2017.177

    Article  Google Scholar 

  52. Daoudi R, Djemal K, Benyettou A (2014) Digital database for screening mammography classification using improved artificial immune system approaches. In: IJCCI (ECTA), pp 244–250. https://doi.org/10.5220/0005079602440250

  53. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: An imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R (eds) Advances in neural information processing systems 32, Curran Associates, Inc., 8026–8037

  54. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, Ieee, pp 248–255. https://doi.org/10.1109/CVPR.2009.5206848

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yide Ma.

Ethics declarations

Conflict of Interests

There are no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Lou, M., Qi, Y. et al. Adaptive channel and multiscale spatial context network for breast mass segmentation in full-field mammograms. Appl Intell 51, 8810–8827 (2021). https://doi.org/10.1007/s10489-021-02297-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02297-3

Keywords

Navigation