Skip to main content
Log in

Improved binary pigeon-inspired optimization and its application for feature selection

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The Pigeon-Inspired Optimization (PIO) algorithm is an intelligent algorithm inspired by the behavior of pigeons returned to the nest. The binary pigeon-inspired optimization (BPIO) algorithm is a binary version of the PIO algorithm, it can be used to optimize binary application problems. The transfer function plays a very important part in the BPIO algorithm. To improve the solution quality of the BPIO algorithm, this paper proposes four new transfer function, an improved speed update scheme, and a second-stage position update method. The original BPIO algorithm is easier to fall into the local optimal, so a new speed update equation is proposed. In the simulation experiment, the improved BPIO is compared with binary particle swarm optimization (BPSO) and binary grey wolf optimizer (BGWO). In addition, the benchmark test function, statistical analysis, Friedman’s test and Wilcoxon rank-sum test are used to prove that the improved algorithm is quite effective, and it also verifies how to set the speed of dynamic movement. Finally, feature selection was successfully implemented in the UCI data set, and higher classification results were obtained with fewer feature numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Smith A E (2000) Swarm intelligence: from natural to artificial systems [book reviews]. IEEE Trans Evol Comput 4(2):192–193. https://doi.org/10.1109/TEVC.2000.850661

    Article  Google Scholar 

  2. Slowik A, Kwasnicka H (2017) Nature inspired methods and their industry applications-swarm intelligence algorithms. IEEE Trans Ind Inf 14(3):1004–1015. https://doi.org/10.1109/TII.2017.2786782

    Article  Google Scholar 

  3. Xue B, Zhang M, Browne W N, Yao X (2016) A survey on evolutionary computation approaches to feature selection. IEEE Trans Evol Comput 20(4):606–626. https://doi.org/10.1109/TEVC.2015.2504420

    Article  Google Scholar 

  4. Mavrovouniotis M, Li C, Yang S (2017) A survey of swarm intelligence for dynamic optimization: Algorithms and applications. Swarm Evol Comput 33:1–17. https://doi.org/10.1016/j.swevo.2016.12.005

    Article  Google Scholar 

  5. Hinchey M G, Sterritt R, Rouff C (2007) Swarms and swarm intelligence. Computer 40 (4):111–113. https://doi.org/10.1109/MC.2007.144

    Article  Google Scholar 

  6. Abraham A, Guo H, Liu H (2006) Swarm intelligence: foundations, perspectives and applications. In: Swarm intelligent systems. Springer, pp 3–25

  7. Sörensen K (2015) Metaheuristics’ the metaphor exposed. Int Trans Oper Res 22(1):3–18. https://doi.org/10.1111/itor.12001

    Article  MathSciNet  MATH  Google Scholar 

  8. Chu S-C, Huang H-C, Roddick J F, Pan J-S (2011) Overview of algorithms for swarm intelligence. In: International Conference on Computational Collective Intelligence. Springer, pp 28–41

  9. Krause J, Ruxton G D, Krause S (2010) Swarm intelligence in animals and humans. Trends Ecol Evol 25(1):28–34. https://doi.org/10.1016/j.tree.2009.06.016

    Article  Google Scholar 

  10. Chandra D K, Ravi V (2009) Feature selection and fuzzy rule-based classifier applied to bankruptcy prediction in banks. Int J Inf Decis Sci 1(4):343–365. https://doi.org/10.1504/IJIDS.2009.027756

    Google Scholar 

  11. Chen S-M, Chang Y-C, Pan J-S (2013) Fuzzy rules interpolation for sparse fuzzy rule-based systems based on interval type-2 gaussian fuzzy sets and genetic algorithms. IEEE Trans Fuzzy Syst 21(3):412–425. https://doi.org/10.1109/TFUZZ.2012.2226942

    Article  Google Scholar 

  12. McCulloch W S, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bullet Math Biophys 5(4):115–133. https://doi.org/10.1007/BF02478259

    Article  MathSciNet  MATH  Google Scholar 

  13. Chaotao Chen J R (2019) Gated recurrent neural network with sentimental relations for sentiment classification. Inf Sci 502:268–278. https://doi.org/10.1016/j.ins.2019.06.050

    Article  Google Scholar 

  14. Xu Y, Han J, Wang E , Ming J, Xiong H, Yang Y (2019) Slanderous user detection with modified recurrent neural networks in recommender system. Inf Sci 505:265–281. https://doi.org/10.1016/j.ins.2019.07.081

    Article  MathSciNet  Google Scholar 

  15. Bäck T, Fogel D B, Michalewicz Z (1997) The handbook of evolutionary computation. Release 97(1):B1

    MATH  Google Scholar 

  16. Canayaz M, Karci A (2016) Cricket behaviour-based evolutionary computation technique in solving engineering optimization problems. Appl Intell 44(2):362–376. https://doi.org/10.1007/s10489-015-0706-6

    Article  Google Scholar 

  17. Robles-Berumen H, Zafra A, Fardoun H M, Ventura S (2019) Leac: An efficient library for clustering with evolutionary algorithms. Knowl-Based Syst 179:117–119. https://doi.org/10.1016/j.knosys.2019.05.008

    Article  Google Scholar 

  18. Holland J H (1973) Genetic algorithms and the optimal allocation of trials. SIAM J Comput 2 (2):88–105. https://doi.org/10.1137/0202009

    Article  MathSciNet  MATH  Google Scholar 

  19. Sayed S, Nassef M, Badr A, Farag I (2019) A nested genetic algorithm for feature selection in high-dimensional cancer microarray datasets. Expert Syst Appl 121:233–243. https://doi.org/10.1016/j.eswa.2018.12.022

    Article  Google Scholar 

  20. Song Y, Wang F, Chen X (2019) An improved genetic algorithm for numerical function optimization. Appl Intell 49(5):1880–1902. https://doi.org/10.1007/s10489-018-1370-4

    Article  Google Scholar 

  21. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol 4. IEEE, pp 1942–1948

  22. Chen K, Zhou F-Y, Yuan X-F (2019) Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection. Expert Syst Appl 128:140–156. https://doi.org/10.1016/j.eswa.2019.03.039

    Article  Google Scholar 

  23. Chen K, Zhou F, Liu A (2018) Chaotic dynamic weight particle swarm optimization for numerical function optimization. Knowl-Based Syst 139:23–40. https://doi.org/10.1016/j.knosys.2017.10.011

    Article  Google Scholar 

  24. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  25. Hancer E, Xue B, Zhang M (2018) Differential evolution for filter feature selection based on information theory and feature ranking. Knowl-Based Syst 140:103–119. https://doi.org/10.1016/j.knosys.2017.10.028

    Article  Google Scholar 

  26. Wang S, Li Y, Yang H (2017) Self-adaptive differential evolution algorithm with improved mutation mode. Appl Intell 47(3):644–658. https://doi.org/10.1007/s10489-017-0914-3

    Article  Google Scholar 

  27. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Glob Optim 39(3):459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  28. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report, Technical report-tr06, Erciyes university, engineering faculty, computer

  29. Mirjalili S, Mirjalili S M, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  30. Pan J-S, Hu P, Chu S-C (2019) Novel parallel heterogeneous meta-heuristic and its communication strategies for the prediction of wind power. Processes 7(11):845. https://doi.org/10.3390/pr7110845

    Article  Google Scholar 

  31. Duan H, Qiao P (2014) Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. International journal of intelligent computing and cybernetics. https://doi.org/10.1108/IJICC-02-2014-0005

  32. Tian A-Q, Chu S-C, Pan J-S, Liang Y (2020) A novel pigeon-inspired optimization based mppt technique for pv systems. Processes 8(3):356. https://doi.org/10.3390/pr8030356

    Article  Google Scholar 

  33. Nguyen T-T, Dao T-K, Sung T-W, Ngo T-G, Pan J-S (2020) Pigeon inspired optimization for node location in wireless sensor network. Int Conf Eng Res Appl 104:589–598. https://doi.org/10.1007/978-3-030-37497-6_67

    Google Scholar 

  34. Elawady R M, Barakat S, Elrashidy N M (2014) Different feature selection for sentiment classification. Int J Inf Sci Intell Syst 3(1):137–150

    Google Scholar 

  35. Larry A, Rendell K K (1992) The feature selection problem: Traditional methods and a new algorithm. AAAI, vol 2, pp 129–134

  36. Singh D, Singh B (2019) Hybridization of feature selection and feature weighting for high dimensional data. Appl Intell 49(4):1580–1596. https://doi.org/10.1007/s10489-018-1348-2

    Article  Google Scholar 

  37. Onan A, Korukoğlu S (2017) A feature selection model based on genetic rank aggregation for text sentiment classification. J Inf Sci 43(1):25–38. https://doi.org/10.1177/0165551515613226

    Article  Google Scholar 

  38. Yang D-H, Yu G (2013) A method of feature selection and sentiment similarity for chinese micro-blogs. J Inf Sci 39(4):429–441. https://doi.org/10.1177/0165551513480308

    Article  Google Scholar 

  39. Gao W, Hu L, Zhang P (2020) Feature redundancy term variation for mutual information-based feature selection. Appl Intell 50(4):1272–1288. https://doi.org/10.1007/s10489-019-01597-z

    Article  Google Scholar 

  40. Wang X, Yang J, Teng X, Xia W, Jensen R (2007) Feature selection based on rough sets and particle swarm optimization. Pattern Recogn Lett 28(4):459–471. https://doi.org/10.1016/j.patrec.2006.09.003

    Article  Google Scholar 

  41. Dornaika F (2020) Multi-layer manifold learning with feature selection. Appl Intell 50:1859–1871. https://doi.org/10.1007/s10489-019-01563-9

    Article  Google Scholar 

  42. Maza S, Touahria M (2019) Feature selection for intrusion detection using new multi-objective estimation of distribution algorithms. Appl Intell 49(12):4237–4257. https://doi.org/10.1007/s10489-019-01503-7

    Article  Google Scholar 

  43. Cui Z, Zhang J, Wang Y, Cao Y, Cai X, Zhang W, Chen J (2019) A pigeon-inspired optimization algorithm for many-objective optimization problems. Sci China Inf Sci 62:070212:1–070212:3

    Article  Google Scholar 

  44. Duan H, Wang X (2015) Echo state networks with orthogonal pigeon-inspired optimization for image restoration. IEEE Trans Neural Netw Learn Syst 27(11):2413–2425. https://doi.org/10.1109/TNNLS.2015.2479117

    Article  MathSciNet  Google Scholar 

  45. Bolaji A L, Babatunde B S, Shola P B (2018) Adaptation of binary pigeon-inspired algorithm for solving multidimensional knapsack problem. In: Soft Computing: Theories and Applications, vol 583. Springer, pp 743–751

  46. Yang Z, Liu K, Fan J, Guo Y, Niu Q, Zhang J (2019) A novel binary/real-valued pigeon-inspired optimization for economic/environment unit commitment with renewables and plug-in vehicles. Sci China Inf Sci 62(7):70213. https://doi.org/10.1007/s11432-018-9730-4

    Article  Google Scholar 

  47. Bolaji A L, Okwonu F Z, Shola P B, Balogun B S, Adubisi O D (2020) A modified binary pigeon-inspired algorithm for solving the multi-dimensional knapsack problem. J Intell Syst 30(1):90–103. https://doi.org/10.1515/jisys-2018-0450

    Google Scholar 

  48. Tian A-Q, Chu S-C, Pan J-S, Cui H, Zheng W-M (2020) A compact pigeon-inspired optimization for maximum short-term generation mode in cascade hydroelectric power station. Sustainability 12(3):767. https://doi.org/10.3390/su12030767

    Article  Google Scholar 

  49. Zheng H, Wei C (2020) Binary pigeon-inspired optimization for quadrotor swarm formation control. Adv Swarm Intell:71–82. https://doi.org/10.1007/978-3-030-53956-6_7

  50. Dou R, Duan H (2016) Pigeon inspired optimization approach to model prediction control for unmanned air vehicles. Aircraft Eng Aerosp Technol Int J 88(1):108–116. https://doi.org/10.1108/AEAT-05-2014-0073

    Article  Google Scholar 

  51. Hu P, Pan J-S, Chu S-C (2020) Improved binary grey wolf optimizer and its application for feature selection. Knowl-Based Syst:105746. https://doi.org/10.1016/j.knosys.2020.105746

  52. Beheshti Z (2020) A time-varying mirrored s-shaped transfer function for binary particle swarm optimization. Inf Sci 512:1503–1542. https://doi.org/10.1016/j.ins.2019.10.029

    Article  MathSciNet  Google Scholar 

  53. Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701. https://doi.org/10.1080/01621459.1937.10503522

    Article  MATH  Google Scholar 

  54. Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11(1):86–92. https://doi.org/https://www.jstor.org/stable/2235971

    Article  MathSciNet  MATH  Google Scholar 

  55. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  56. Dua D, Graff C (2017) UCI machine learning repository University of California, Irvine, School of Information and Computer Sciences. http://archive.ics.uci.edu/ml

  57. Emary E, Zawbaa H M, Hassanien A E (2016) Binary grey wolf optimization approaches for feature selection. Neurocomputing 172:371–381. https://doi.org/10.1016/j.neucom.2015.06.083

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by National Natural Science Foundation of China with grant number NSF 61872085, Natural Science Foundation of Fujian Province with grant number 2018J01638, and project 2018Y3001 of Fujian Provincial Department of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Chuan Chu.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, JS., Tian, AQ., Chu, SC. et al. Improved binary pigeon-inspired optimization and its application for feature selection. Appl Intell 51, 8661–8679 (2021). https://doi.org/10.1007/s10489-021-02302-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02302-9

Keywords

Navigation