Skip to main content
Log in

A new distance-based total uncertainty measure in Dempster-Shafer evidence theory

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Uncertainty measure in Dempster-Shafer (D-S) evidence theory is crucial to assess the quality of information conveyed by belief structures. Most of the previous studies consider this issue from the perspective of viewing the D-S evidence theory as a generalization of probability theory. However, the inconsistency between D-S evidence theory and probability theory may lead to some limitations to existing measures. Deng et al proposed an improved total uncertainty measure which is directly based on D-S evidence theory. In their measure, the belief structures are transformed to belief interval which is constructed by the belief function and plausibility function of a proposition. Inspired by the previous research, a new total uncertainty measure (NTU) is proposed in this paper. The proposed measure is based on the Euclidean distance between the belief interval of the singleton subset and the most uncertain interval. It not only retains the properties and advantages of the previous measure, but also presents a higher sensitivity and greater extent to the change of evidences. Some numerical examples, practical applications and related analyses are used to verify the rationality and sensitivity of the proposed measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Fortino G, Galzarano S, Gravina R, Li W (2015) A framework for collaborative computing and multi-sensor data fusion in body sensor networks. Inform Fusion 22:50–70

    Article  Google Scholar 

  2. Geng H, Liang Y, Yang F, Xu L, Pan Q (2017) Model-reduced fault detection for multi-rate sensor fusion with unknown inputs. Inform Fusion 33:1–14

    Article  Google Scholar 

  3. Zhang L, Ding L, Wu X, Skibniewski MJ (2017) An improved Dempster-Shafer approach to construction safety risk perception. Knowl-Based Syst 132(sep.15):30–46

    Article  Google Scholar 

  4. Nie R-X, Tian Z-P, Wang X-K, Wang J-Q, Wang T-L (2018) Risk evaluation by fmea of supercritical water gasification system using multi-granular linguistic distribution assessment. Knowl-Based Syst 162:185–201

    Article  Google Scholar 

  5. Wu D, Tang Y (2020) An improved failure mode and effects analysis method based on uncertainty measure in the evidence theory. Qual Reliab Eng Int 36(5):1786–1807

    Article  Google Scholar 

  6. Zhang H, Deng Y (2020) Weighted belief function of sensor data fusion in engine fault diagnosis. Soft Comput 24(3):2329–2339

    Article  MathSciNet  Google Scholar 

  7. Song Y, Fu Q, Wang Y-F, Wang X (2019) Divergence-based cross entropy and uncertainty measures of atanassov’s intuitionistic fuzzy sets with their application in decision making. Appl Soft Comput 84:105703

    Article  Google Scholar 

  8. Deng X, Deng Y (2019) D-ahp method with different credibility of information. Soft Comput 23(2):683–691

    Article  Google Scholar 

  9. Xu X, Zhang D, Bai Y, Chang L, Li J (2020) Evidence reasoning rule-based classifier with uncertainty quantification. Inf Sci 516:192–204

    Article  Google Scholar 

  10. Xiao F, Zhang Z, Abawajy J (2019) Workflow scheduling in distributed systems under fuzzy environment. J Intell Fuzzy Syst 37(4):5323–5333

    Article  Google Scholar 

  11. Bo W, Xiao F, Shi Y (2019) Synchronization in kuramoto oscillator networks with sampled-data updating law. IEEE Trans Cybern 50(6):2380–2388

    Google Scholar 

  12. Tang Y, Wu D, Liu Z (2021) A new approach for generation of generalized basic probability assignment in the evidence theory. Pattern Anal Applic 1–17

  13. Behrouz M, Alimohammadi S (2018) Uncertainty analysis of flood control measures including epistemic and aleatory uncertainties: Probability theory and evidence theory. J Hydrol Eng 23(8):04018033

    Article  Google Scholar 

  14. Liu B, Hu Y, Deng Y (2018) New failure mode and effects analysis based on d numbers downscaling method. Int J Comput Commun Control, 13(2)

  15. Deng X, Jiang W (2019) Evaluating green supply chain management practices under fuzzy environment: a novel method based on d number theory. Int J Fuzzy Syst 21(5):1389–1402

    Article  Google Scholar 

  16. Zadeh LA (2011) A note on z-numbers. Inf Sci 181(14):2923–2932

    Article  MATH  Google Scholar 

  17. Liu Q, Ye T, Kang B (2019) Derive knowledge of z-number from the perspective of Dempster-Shafer evidence theory. Eng Appl Artif Intell 85:754–764

    Article  Google Scholar 

  18. Seiti H, Hafezalkotob A (2019) Developing the r-topsis methodology for risk-based preventive maintenance planning: A case study in rolling mill company. Comput Indust Eng 128:622–636

    Article  Google Scholar 

  19. Seiti H, Hafezalkotob A, Martínez L (2019) R-numbers, a new risk modeling associated with fuzzy numbers and its application to decision making. Inf Sci 483:206–231

    Article  MathSciNet  MATH  Google Scholar 

  20. Düntsch I, Gediga G (1998) Uncertainty measures of rough set prediction. Artif Intell 106 (1):109–137

    Article  MathSciNet  MATH  Google Scholar 

  21. Luo C, Li T, Yi Z, Fujita H (2016) Matrix approach to decision-theoretic rough sets for evolving data. Knowl-Based Syst 99:123–134

    Article  Google Scholar 

  22. Xiao F (2019) A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems. IEEE Trans Syst Man Cybern Syst

  23. Cao Z, Ding W, Wang Y-K, Hussain FK, Al-Jumaily A, Lin C-T (2020) Effects of repetitive ssveps on eeg complexity using multiscale inherent fuzzy entropy. Neurocomputing 389:198–206

    Article  Google Scholar 

  24. Yang J-B, Xu D-L (2013) Evidential reasoning rule for evidence combination. Artif Intell 205:1–29

    Article  MathSciNet  MATH  Google Scholar 

  25. Fu C, Hou B, Chang W, Feng N, Yang S (2020) Comparison of evidential reasoning algorithm with linear combination in decision making. Int J Fuzzy Syst 22(2):686–711

    Article  Google Scholar 

  26. Dempster AP (2008) Upper and lower probabilities induced by a multivalued mapping. In: Classic works of the Dempster-Shafer theory of belief functions. Springer, pp 57–72

  27. Shafer G (1976) A mathematical theory of evidence, vol 42. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  28. Deng X, Jiang W (2020) On the negation of a dempster–shafer belief structure based on maximum uncertainty allocation. Inf Sci 516:346–352

    Article  MathSciNet  MATH  Google Scholar 

  29. Xiao F (2020) A new divergence measure for belief functions in d–s evidence theory for multisensor data fusion. Inf Sci 514:462–483

    Article  MathSciNet  MATH  Google Scholar 

  30. Jing M, Tang Y (2021) A new base basic probability assignment approach for conflict data fusion in the evidence theory. Appl Intell 51(2):1056–1068

    Article  MathSciNet  Google Scholar 

  31. Su X, Mahadevan S, Han W, Deng Y (2016) Combining dependent bodies of evidence. Appl Intell 44(3):634–644

    Article  Google Scholar 

  32. Deng X, Qi L, Deng Y, Mahadevan S (2016) An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Inf Sci 340:250–261

    Article  Google Scholar 

  33. Deng X, Jiang W, Wang Z (2019) Zero-sum polymatrix games with link uncertainty: A Dempster-Shafer theory solution. Appl Math Comput 340:101–112

    MathSciNet  MATH  Google Scholar 

  34. Mo H, Deng Y (2019) Identifying node importance based on evidence theory in complex networks. Physica A: Stat Mechan Appl 529:121538

    Article  Google Scholar 

  35. Shannon CE (2001) A mathematical theory of communication. ACM SIGMOBILE mobile computing and communications review 5(1):3–55

    Article  MathSciNet  Google Scholar 

  36. Pal NR, Bezdek JC, Hemasinha R (1992) Uncertainty measures for evidential reasoning i: A review. Int J Approx Reason 7(3-4):165–183

    Article  MathSciNet  MATH  Google Scholar 

  37. Pal NR, Bezdek JC, Hemasinha R (1993) Uncertainty measures for evidential reasoning II: A new measure of total uncertainty. Int J Approx Reason 8(1):1–16

    Article  MathSciNet  MATH  Google Scholar 

  38. Abellán J, Bossé É (2020) Critique of recent uncertainty measures developed under the evidence theory and belief intervals. IEEE Trans Syst Man Cybern Syst 50(3):1186–1192

    Article  Google Scholar 

  39. Yager RR (1983) Entropy and specificity in a mathematical theory of evidence. Int J Gen Syst 9(4):249–260

    Article  MathSciNet  MATH  Google Scholar 

  40. Yager RR (2018) Interval valued entropies for dempster–shafer structures. Knowl-Based Syst 161:390–397

    Article  Google Scholar 

  41. Jiroušek R, Shenoy PP (2018) A new definition of entropy of belief functions in the dempster–shafer theory. Int J Approx Reason 92:49–65

    Article  MathSciNet  MATH  Google Scholar 

  42. Körner R, Näther W (1995) On the specificity of evidences. Fuzzy Sets Syst 71(2):183–196

    Article  MathSciNet  MATH  Google Scholar 

  43. Jiang W (2018) A correlation coefficient for belief functions. Int J Approx Reason 103:94–106

    Article  MathSciNet  MATH  Google Scholar 

  44. Jiroušek R, Shenoy PP (2020) On properties of a new decomposable entropy of Dempster-Shafer belief functions. Int J Approx Reason 119:260–279

    Article  MathSciNet  MATH  Google Scholar 

  45. Hohle U (1982) Entropy with respect to plausibility measures. In: Proc of 12th IEEE Int Symp on multiple valued logic, Paris 1982

  46. Dubois D, Prade H (1987) Properties of measures of information in evidence and possibility theories. Fuzzy Sets Syst 24(2):161–182

    Article  MathSciNet  MATH  Google Scholar 

  47. Klir GJ, Wierman MJ (1999) Uncertainty formalizations. In: Uncertainty-based information. Springer, pp 7–41

  48. Klir GJ, Parviz B (1992) A note on the measure of discord. In: Uncertainty in artificial intelligence. Elsevier, pp 138–141

  49. Dubois D, Prade H (1985) A note on measures of specificity for fuzzy sets. Int J General Syst 10(4):279–283

    Article  MathSciNet  MATH  Google Scholar 

  50. Hartley RVL (1928) Transmission of information 1. Bell Syst Technic J 7(3):535–563

    Article  Google Scholar 

  51. Harmanec D, Klir GJ (1994) Measuring total uncertainty in dempster-shafer theory: A novel approach. Int J Gen Syst 22(4):405–419

    Article  MATH  Google Scholar 

  52. Jousselme A-L, Liu C, Grenier D, Bossé É (2006) Measuring ambiguity in the evidence theory. IEEE Trans Syst Man Cybern-Part A Syst Humans 36(5):890–903

    Article  Google Scholar 

  53. Maeda Y, Nguyen HT, Ichihashi H (1993) Maximum entropy algorithms for uncertainty measures. Int J Uncert Fuzziness Knowl-Based Syst 1(01):69–93

    Article  MathSciNet  MATH  Google Scholar 

  54. Klir GJ, Ramer A (1990) Uncertainty in the dempster-shafer theory: A critical re-examination. Int J Gen Syst 18(2):155–166

    Article  MATH  Google Scholar 

  55. Klir GJ, Smith RM (1999) Recent developments in generalized information theory. Int J Fuzzy Syst 1(1):1–13

    MathSciNet  Google Scholar 

  56. Pearl J (1990) Reasoning with belief functions: An analysis of compatibility. Int J Approx Reason 4(5-6):363–389

    Article  MathSciNet  MATH  Google Scholar 

  57. Yi Y, Han D (2016) A new distance-based total uncertainty measure in the theory of belief functions. Knowl-Based Syst 94:114–123

    Article  Google Scholar 

  58. Deng X, Xiao F, Deng Y (2017) An improved distance-based total uncertainty measure in belief function theory. Appl Intell 46(4):898–915

    Article  Google Scholar 

  59. Su Z-G, Denoeux T (2018) Bpec: Belief-peaks evidential clustering. IEEE Trans Fuzzy Syst 27(1):111–123

    Article  Google Scholar 

  60. Su Z-G, Denoeux T, Hao Y-S, Zhao M (2018) Evidential k-nn classification with enhanced performance via optimizing a class of parametric conjunctive t-rules. Knowl-Based Syst 142:7–16

    Article  Google Scholar 

  61. Wu D, Liu Z, Tang Y (2020) A new classification method based on the negation of a basic probability assignment in the evidence theory. Eng Appl Artif Intell 96:103985

    Article  Google Scholar 

  62. Liu Z-G, Pan Q, Dezert J, Mercier G (2017) Hybrid classification system for uncertain data. IEEE Trans Syst Man Cybern 47(10):2783–2790

    Article  Google Scholar 

  63. Yi Y, Han D, Dezert J (2016) A new non-specificity measure in evidence theory based on belief intervals. Chin J Aeronaut 29(3):704–713

    Article  Google Scholar 

  64. Abellán J, Masegosa A (2008) Requirements for total uncertainty measures in dempster–shafer theory of evidence. Int J Gen Syst 37(6):733–747

    Article  MathSciNet  MATH  Google Scholar 

  65. Han D, Dezert J, Yang Y (2016) Belief interval-based distance measures in the theory of belief functions. IEEE Trans Syst Man Cybern Syst 48(6):833–850

    Article  Google Scholar 

  66. Irpino A, Verde R (2008) Dynamic clustering of interval data using a wasserstein-based distance. Pattern Recogn Lett 29(11):1648–1658

    Article  MATH  Google Scholar 

  67. Deng X (2018) Analyzing the monotonicity of belief interval based uncertainty measures in belief function theory. Int J Intell Syst 33(9):1869–1879

    Article  Google Scholar 

  68. Abellan J (2011) Combining nonspecificity measures in dempster–shafer theory of evidence. Int J Gen Syst 40(6):611–622

    Article  MathSciNet  MATH  Google Scholar 

  69. Abellán J, Masegosa A (2008) Requirements for total uncertainty measures in dempster–shafer theory of evidence. Int J Gen Syst 37(6):733–747

    Article  MathSciNet  MATH  Google Scholar 

  70. Klir GJ, Wierman MJ (2013) Uncertainty-based information: elements of generalized information theory, volume 15 Physica

  71. Papoulis A, Saunders H (1989) Probability random variables and stochastic processes

  72. Quost B, Denaeux T, Masson M (2005) Pairwise classifier combination in the transferable belief model. In: 2005 7th international conference on information fusion, vol 1. IEEE, pp 8–pp

  73. Walley P (2000) Towards a unified theory of imprecise probability. Int J Approx Reason 24 (2-3):125–148

    Article  MathSciNet  MATH  Google Scholar 

  74. Augustin Thomas, Hable Robert (2010) On the impact of robust statistics on imprecise probability models: A review. Struct Saf 32(6):358–365

    Article  Google Scholar 

  75. Yu X, Zou P, Li M (2012) Dempster-shafer theory as an applied approach to scenario forecasting based on imprecise probability. In: IEEE 12th international conference on computer and information technology. IEEE, p 2012

  76. Tsallis C (2009) Introduction to nonextensive statistical mechanics: Approaching a complex world. Springer Science & Business Media, New York

    MATH  Google Scholar 

  77. Yong D, WenKang S, ZhenFu Z, Qi L (2004) Combining belief functions based on distance of evidence. Decis Support Syst 38(3):489–493

    Article  Google Scholar 

  78. Murphy CK (2000) Combining belief functions when evidence conflicts. Decis Support Syst 29 (1):1–9

    Article  Google Scholar 

  79. Kang B-Y, Li Y, Deng Y, Zhang Y-J, Deng X-Y (2012) Determination of basic probability assignment based on interval numbers and its application. Dianzi Xuebao(Acta Electronica Sinica) 40(6):1092–1096

    Google Scholar 

  80. Smets P (2005) Decision making in the tbm: The necessity of the pignistic transformation. Int J Approx Reason 38(2):133– 147

    Article  MathSciNet  MATH  Google Scholar 

  81. Duda RO, Hart PE, Stork DG (2012) Pattern classification. Wiley, New York

    MATH  Google Scholar 

  82. Masson M-H, Denoeux T (2008) Ecm: An evidential version of the fuzzy c-means algorithm. Pattern Recogn 41(4):1384– 1397

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchuan Tang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is partially supported by National Key Research and Development Project of China (Grant No. 2019YFB2102602).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Chen, Z., Li, H. et al. A new distance-based total uncertainty measure in Dempster-Shafer evidence theory. Appl Intell 52, 1209–1237 (2022). https://doi.org/10.1007/s10489-021-02378-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02378-3

Keywords

Navigation