Skip to main content
Log in

Artificial electric field algorithm with inertia and repulsion for spherical minimum spanning tree

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Artificial electric field algorithm (AEFA) is a potential global optimization algorithm proposed in recent years and has been successfully applied to various engineering optimizations. However, precocious convergence tends to occur when solving complex engineering optimization problems. To avoid premature convergence to some extent, an artificial electric field algorithm with inertia and repulsion (IRAEFA) is proposed. The IRAEFA algorithm introduces the inertia mechanism and the repulsion between charges, expands the search space, increases the diversity of population, balances the exploration and development ability of the algorithm, and avoids the algorithm falling into the local optimal solution. Finally, the IRAEFA algorithm is used to solve the spherical mining spanning tree (MST) problem, and the results obtained are compared and analyzed with the results of other well-known metaheuristics optimization algorithms. Experimental results show that the proposed algorithm has better performance than other algorithms in solving spherical MST problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45

Similar content being viewed by others

References

  1. Reinhard D (2000) Graph Theory. Mathematical Gazette 173:67–128

    Google Scholar 

  2. Chou H, Premkumar G, C., Chu H (2001) Genetic algorithms for communications network design-an empirical study of the factors that influence performance. IEEE Trans Evolution Comput 5:236–249

    Article  Google Scholar 

  3. Beardwood J, Halton JJH, Hammersley JM (1959) The shortest path through many points. Mathematical Proc Cambridge Philos Soc 55:299–327

    Article  MathSciNet  MATH  Google Scholar 

  4. Vitaly O, Singler PSJ (2009) The filter-kruskal minimum spanning tree algorithm. Proceedings of the Workshop on Algorithm Engineering and Experiments, ALENEX 2009, New York, New York, USA, January 3, 2009. Soc Indust Appl Mathematics

  5. Bo Jiang Z (2009) Li. Research on minimum spanning tree based on prim algorithm. Comput Eng Design 30(13):3244–3247

    Google Scholar 

  6. Beheshti Zahra SMH (2013) Shamsuddin. A review of population-based meta-heuristic algorithm. Int J Advances Soft Comput Applic 5:1–35

    Google Scholar 

  7. Back T (1996) Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms, Oxford University press

  8. Webster B, Bernhard PJ (2003) A Local Search Optimization Algorithm Based on Natural Principles of Gravitation. Proceedings of the International Conference on Information and Knowledge Engineering. IKE'03, June 23 - 26, 2003, Las Vegas, Nevada, USA, Vol. 1. DBLP

  9. G Beni, J Wang (1993) Swarm Intelligence in Cellular Robotic Systems. Robots and Biological Systems: Towards a New Bionics. Springer, pp. 703-712.

  10. Holland John H (1992) Genetic Algorithms. Sci Am

  11. Storn R (2008) Differential Evolution Research – Trends and Open Questions. Stud Comput Intell 143:1–31

    Article  Google Scholar 

  12. Simon D (2008) Biogeography-Based Optimization. IEEE Trans Evolution Comput 12:702–713

    Article  Google Scholar 

  13. Rechenberg, I (1994) Evolutionary Strategy. Computational Intelligence Imitating Life

  14. Fogel GB (2011) Evolutionary Programming. In: Rozenberg G, Bäck T, Kok JN (eds) Handbook of Natural Computing. Springer, Berlin

    Google Scholar 

  15. Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37:106–111

    Article  Google Scholar 

  16. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inform Sci 179:2232–2248

    Article  MATH  Google Scholar 

  17. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213:267–289

    Article  MATH  Google Scholar 

  18. Tayarani-N MH. Akbarzadeh-T MR (2008) Magnetic Optimization Algorithms a new synthesis. 2008 IEEE Congress on Evolutionary Computation, IEEE

  19. Formato RA (2007) Central force optimization. Prog Electromagn Res 77:425–491

    Article  Google Scholar 

  20. Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38:13170–13180

    Article  Google Scholar 

  21. Hatamlou A (2013) Black hole: A new heuristic optimization approach for data clustering. Inform Sci 222:175–184

    Article  MathSciNet  Google Scholar 

  22. Du H, Wu X, Zhuang J (2006) Small-World Optimization Algorithm for Function Optimization. International Conference on Natural Computation, Springer, pp. 264-273

  23. Shah-Hosseini H (2011) Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int J Comput Sci Eng 6:132–140

    Google Scholar 

  24. Hsiao YT, et al (2006) A novel optimization algorithm: space gravitational optimization." IEEE International Conference on Systems IEEE

  25. Kennedy J, Eberhart R (1995) Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks vol 4, pp 1942-1948

  26. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Glob Optim 39:459–471

    Article  MathSciNet  MATH  Google Scholar 

  27. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B 26:29–41

    Article  Google Scholar 

  28. Yang XS (2009) Firefly Algorithms for Multimodal Optimization. International Symposium on Stochastic Algorithms, Springer, pp 169-178

  29. Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483

    Article  Google Scholar 

  30. Valian E, Valian E (2013) A cuckoo search algorithm by Lévy flights for solving reliability redundancy allocation problems. Eng Optimiz 45:1273–1286

    Article  MathSciNet  Google Scholar 

  31. Uymaz SA, Tezel G, Yel E (2015) Artificial algae algorithm (AAA) for nonlinear global optimization. Appl Soft Comput 31:153–171

    Article  Google Scholar 

  32. Kiran MS (2015) TSA: Tree-seed algorithm for continuous optimization. Expert Syst Appl 42:6686–6698

    Article  Google Scholar 

  33. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Advance Eng Software 69:46–61

    Article  Google Scholar 

  34. James J, Li VO (2015) A social spider algorithm for global optimization. Appl Soft Comput 30:614–627

    Article  Google Scholar 

  35. Mirjalili S (2015) Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  Google Scholar 

  36. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  37. Kaveh A, Farhoudi N (2013) A new optimization method: dolphin echolocation. Adv Eng Softw 59:53–70

    Article  Google Scholar 

  38. Chu S-C, Tsai P-W, Pan J-S (2006) Cat swarm optimization, in: Pacific Rim International Conference on Artificial Intelligence, Springer, pp. 854-858

  39. Yazdani M, Jolai F (2016) Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J Comput Des Eng 3:24–36

    Google Scholar 

  40. Bo X, Gao WJ (2014) Fruit Fly Optimization Algorithm. In: Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms. Intelligent Systems Reference Library, vol 62. Springer, Cham

    MATH  Google Scholar 

  41. Khishe M., M. R. Mosavi. Chimp optimization algorithm. Expert Syst Appl , 2020, 149:113338.

  42. Yadav AA (2019) AEFA: Artificial electric field algorithm for global optimization. Swarm Evolution Comput 48:93–108

    Article  Google Scholar 

  43. Yadav AA, Kumar N (2020) Artificial Electric Field Algorithm for Engineering Optimization Problems. Expert Systems with Applications:113308

  44. Yadav AA (2020) Discrete artificial electric field algorithm for high-order graph matching. Appl Soft Comput 92:106260

    Article  Google Scholar 

  45. Hemant P, Rani R (2020) An Improved Artificial Electric Field Algorithm for Multi-Objective Optimization. Processes 8:584

    Article  Google Scholar 

  46. Demirören A, Ekinci S, Hekimoğlu B, Izci D (2020) Opposition-based artificial electric field algorithm and its application to FOPID controller design for unstable magnetic ball suspension system. Eng Sci Technol: Int J

  47. Janjanam L, Saha SK, Kar R, Mandal D (2020) Volterra filter modelling of non-linear system using Artificial Electric Field algorithm assisted Kalman filter and its experimental evaluation. ISA Transactions

  48. Ur A et al (2009) Genetic Algorithm Based Solution For TSP On A Sphere. Mathematic Comput Appl 14:219–228

    Google Scholar 

  49. Eldem H, Ülker E (2017) The application of ant colony optimization in the solution of 3D traveling salesman problem on a sphere. Eng Sci Technol Int J 20:1242–1248

    Google Scholar 

  50. Chen X, Zhou Y, Tang Z, Luo Q (2017) A Hybrid Algorithm Combining Glowworm Swarm Optimization and Complete 2-opt Algorithm for Spherical Travelling Salesman Problems. Appl Soft Comput 58:104–114

    Article  Google Scholar 

  51. Zhou Y, Wang R, Zhao C et al (2019) Discrete greedy flower pollination algorithm for spherical traveling salesman problem. Neural Comput Applic 31:2155–2170

    Article  Google Scholar 

  52. Ouyang X, Zhou Y, Luo Q, Chen H (2013) A Novel Discrete Cuckoo Search Algorithm for Spherical Traveling Salesman Problem. Appl Mathematics Inform Sci 2:777–784

    Article  MathSciNet  Google Scholar 

  53. Crabb MC (2006) Research note: Counting nilpotent endomorphisms. Finite Fields Appl 12:151–154

    Article  MathSciNet  MATH  Google Scholar 

  54. Atashpaz-Gargari E, Lucas C (2008) Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. IEEE Congress on Evolutionary Computation IEEE

  55. Tan Y, Zhu Y (2010) Fireworks Algorithm for Optimization. Advances in Swarm Intelligence. First International Conference, ICSI 2010, Beijing June 12-15, Proceedings, Part I 2010

    Book  Google Scholar 

  56. Dhiman G, Kumar V (2019) Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowledge Based Sys 165:169–196

    Article  Google Scholar 

  57. Shahrzad S, Seyedali M, Rew L (2017) Grasshopper Optimisation Algorithm: Theory and application. Advance Eng Software 105:30–47

    Article  Google Scholar 

  58. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: A new method for stochastic optimization. Future Gen Comput Syst 111:300–323

    Article  Google Scholar 

  59. Abualigah L, Diabat A, Mirjalili S, Elaziz MA, Gandomi AH (2021) The Arithmetic Optimization Algorithm. Comput Methods Appl Mech Engrg 376:113609

    Article  MathSciNet  MATH  Google Scholar 

  60. Wu D, Xu J, Gao X-Z, Zhao H (2020) An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems. IEEE Trans Syst Man Cybernet: Syst. https://doi.org/10.1109/TSMC.2020.3030792

Download references

Acknowledgements

This work is supported by National Science Foundation of China under Grant Nos. 62066005, 61563008, and by Project of Guangxi Natural Science Foundation under Grant No. 2018GXNSFAA138146.Basic Ability Improvement Project for Young and Middle-aged Teachers in Co-lleges and Universities in Guangxi under Grant No. 2020KY04029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongquan Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.nications network design

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, J., Zhou, Y., Tang, Z. et al. Artificial electric field algorithm with inertia and repulsion for spherical minimum spanning tree. Appl Intell 52, 195–214 (2022). https://doi.org/10.1007/s10489-021-02415-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02415-1

Keywords

Navigation