Skip to main content
Log in

Adaptive fuzzy-SIFT rule-based registration for 3D cardiac motion estimation

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

3D Speckle tracking techniques are used to quantify cardiac deformation in 3D echocardiographic images. Elastic image registration methods are successful in solving 3D speckle tracking problems. However, a suitable solution should be exploited to deal with the poor spatio-temporal resolution in the echocardiographic images. That is why the registration problem may encounter some challenges in representing accurate features and defining suitable geometric transformation. The strong modeling ability of a fuzzy rule-based inference system can aid the challenge in geometric modeling. This paper, thus, aims to solve the 3D speckle tracking problem in a new scheme through a fuzzy modeling procedure. The algorithm begins to work by extracting a well-suited local feature descriptor, scale- invariant feature transform (SIFT). Then, the relevant features are aligned with sets of fuzzy rules the optimum parameters of which are adaptively learned in the hybrid learning process of adaptive-neuro fuzzy inference system (ANFIS) structure. Applying the adaptive fuzzy method on STRAUS synthetic dataset yields an acceptable tracking error below 1 mm. Further, strain analysis indicates the capacity of the proposed method in discriminating pathological diagnosis from a healthy one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. https://team.inria.fr/epione/en/data/straus/

References

  1. Saadia A, Rashdi A (2018) A speckle noise removal method. Circuits Syst Signal Process 37(6):2639–2650. https://doi.org/10.1007/s00034-017-0687-2

    Article  MathSciNet  MATH  Google Scholar 

  2. Fatemi A, Berg EAR, Rodriguez-Molares A (2019) Studying the origin of reverberation clutter in echocardiography: in vitro experiments and in vivo demonstrations. Ultrasound Med Biol 45(7):1799–1813. https://doi.org/10.1016/j.ultrasmedbio.2019.01.010

    Article  Google Scholar 

  3. Jang J-SR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685. https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  4. Raheja S, Kumar A (2019) Edge detection based on type-1 fuzzy logic and guided smoothening, Evol. Syst., no. 0123456789. https://doi.org/10.1007/s12530-019-09304-6

  5. Nguyen SD, Choi S-B, Seo T-I (2018) Recurrent mechanism and impulse noise filter for establishing ANFIS. IEEE Trans Fuzzy Syst 26(2):985–997. https://doi.org/10.1109/TFUZZ.2017.2701313

    Article  Google Scholar 

  6. Nagarathinam E, Ponnuchamy T (2019) Image registration-based brain tumor detection and segmentation using ANFIS classification approach. Int J Imaging Syst Technol 29(4):510–517. https://doi.org/10.1002/ima.22329

    Article  Google Scholar 

  7. Selvapandian A, Manivannan K (2018) Fusion based Glioma brain tumor detection and segmentation using ANFIS classification. Comput Methods Prog Biomed 166:33–38. https://doi.org/10.1016/j.cmpb.2018.09.006

    Article  Google Scholar 

  8. Chatterjee S, Das A (2020) A novel systematic approach to diagnose brain tumor using integrated type-II fuzzy logic and ANFIS (adaptive neuro-fuzzy inference system) model. Soft Comput 24(15):11731–11754. https://doi.org/10.1007/s00500-019-04635-7

    Article  Google Scholar 

  9. Thirumurugan P, Shanthakumar P (2016) Brain tumor detection and diagnosis using ANFIS classifier. Int J Imaging Syst Technol 26(2):157–162. https://doi.org/10.1002/ima.22170

    Article  Google Scholar 

  10. Vafamand N, Arefi MM, Khayatian A (2018) Nonlinear system identification based on Takagi-Sugeno fuzzy modeling and unscented Kalman filter. ISA Trans 74:134–143. https://doi.org/10.1016/j.isatra.2018.02.005

    Article  Google Scholar 

  11. Rastegar S, Araújo R, Mendes J (2017) Online identification of Takagi–Sugeno fuzzy models based on self-adaptive hierarchical particle swarm optimization algorithm. Appl Math Model 45:606–620. https://doi.org/10.1016/j.apm.2017.01.019

    Article  MathSciNet  MATH  Google Scholar 

  12. Salgado CM, Viegas JL, Azevedo CS, Ferreira MC, Vieira SM, Sousa JMC (2017) Takagi–Sugeno Fuzzy Modeling Using Mixed Fuzzy Clustering. IEEE Trans Fuzzy Syst 25(6):1417–1429. https://doi.org/10.1109/TFUZZ.2016.2639565

    Article  Google Scholar 

  13. Precup R-E, Teban T-A, de Oliveira TEA, Petriu EM (2016) Evolving fuzzy models for myoelectric-based control of a prosthetic hand,” in 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 72–77. https://doi.org/10.1109/FUZZ-IEEE.2016.7737670

  14. Kumar M, Chatterjee S, Zhang W, Yang J, Kolbe LM (2019) Fuzzy theoretic model based analysis of image features. Inf Sci (Ny) 480:34–54. https://doi.org/10.1016/j.ins.2018.12.024

    Article  MathSciNet  MATH  Google Scholar 

  15. Kumar M, Stoll N, Thurow K, Stoll R (2016) Fuzzy membership descriptors for images. IEEE Trans Fuzzy Syst 24(1):195–207. https://doi.org/10.1109/TFUZZ.2015.2451706

    Article  Google Scholar 

  16. Kumar M, Freudenthaler B (2019) Fuzzy membership functional analysis for nonparametric deep models of image features. IEEE Trans Fuzzy Syst 28(12):1–1. https://doi.org/10.1109/TFUZZ.2019.2950636

    Article  Google Scholar 

  17. Tang X, Jiao L, Emery WJ (2017) SAR image content retrieval based on fuzzy similarity and relevance feedback. IEEE J Sel Top Appl Earth Obs Remote Sens 10(5):1824–1842. https://doi.org/10.1109/JSTARS.2017.2664119

    Article  Google Scholar 

  18. Jain S, Jain A, Verma S, Susan S, Sharma A (2015) Fuzzy match index for scale-invariant feature transform (SIFT) features with application to face recognition with weak supervision. IET Image Process 9(11):951–958. https://doi.org/10.1049/iet-ipr.2014.0670

    Article  Google Scholar 

  19. Zarychta P (2019) Application of fuzzy image concept to medical images matching. Adv Intell Syst Comput 762:27–38. https://doi.org/10.1007/978-3-319-91211-0_3

    Article  Google Scholar 

  20. Bandyopadhyay S, Das S, Datta A (2020) A hybrid fuzzy filtering - fuzzy thresholding technique for region of interest detection in noisy images. Appl Intell 50(4):1112–1132. https://doi.org/10.1007/s10489-019-01551-z

    Article  Google Scholar 

  21. Radha R, Gopalakrishnan R (2020) A medical analytical system using intelligent fuzzy level set brain image segmentation based on improved quantum particle swarm optimization. Microprocess Microsyst 79(September):103283. https://doi.org/10.1016/j.micpro.2020.103283

    Article  Google Scholar 

  22. Mishro PK, Agrawal S, Panda R, Abraham A (2020) A novel Type-2 fuzzy C-means clustering for brain MR image segmentation. IEEE Trans Cybern:1–12. https://doi.org/10.1109/TCYB.2020.2994235

  23. Li F, Shen Q, Li Y, Mac Parthaláin N (2015) Handwritten Chinese character recognition using fuzzy image alignment. Soft Comput 20(8):2939–2949. https://doi.org/10.1007/s00500-015-1923-y

    Article  Google Scholar 

  24. Wang G, Chen Y (2017) Fuzzy correspondences guided Gaussian mixture model for point set registration. Knowledge-Based Syst 136:200–209. https://doi.org/10.1016/j.knosys.2017.09.016

    Article  Google Scholar 

  25. Wang G, Wang Z, Chen Y, Zhao W, Liu X “Fuzzy Correspondences and Kernel Density Estimation for Contaminated Point Set Registration,” in 2015 IEEE international conference on systems. Man Cybern 2015:1936–1941. https://doi.org/10.1109/SMC.2015.338

  26. Abhishek K, Sorensen S, Saponaro P, Treible W, Kambhamettu C (2017) "Robust shape registration using fuzzy correspondences." arXiv preprint arXiv:1702.05664 .

  27. Ghasemi M, Kelarestaghi M, Eshghi F, Sharifi A (2021) AFDL: a new adaptive fuzzy dictionary learning for medical image classification. Pattern Anal Applic 24(1):145–164. https://doi.org/10.1007/s10044-020-00909-1

    Article  Google Scholar 

  28. Cuevas E, Díaz P, Avalos O, Zaldívar D, Pérez-Cisneros M (2018) Nonlinear system identification based on ANFIS-Hammerstein model using gravitational search algorithm. Appl Intell 48(1):182–203. https://doi.org/10.1007/s10489-017-0969-1

    Article  Google Scholar 

  29. Soltany Mahboob A, Zahiri SH (2019) Variable length IPO and its application in concurrent design and train of ANFIS systems. Appl Intell 49(6):2233–2255. https://doi.org/10.1007/s10489-018-1366-0

    Article  Google Scholar 

  30. Butt AH, Rovini E, Fujita H, Maremmani C, Cavallo F (2020) Data-driven models for objective grading improvement of Parkinson’s disease. Ann Biomed Eng 48(12):2976–2987. https://doi.org/10.1007/s10439-020-02628-4

    Article  Google Scholar 

  31. Son LH, Fujita H (2019) Neural-fuzzy with representative sets for prediction of student performance. Appl Intell 49(1):172–187. https://doi.org/10.1007/s10489-018-1262-7

    Article  Google Scholar 

  32. Choi IH, Pak JM, Ahn CK, Lee SH, Lim MT, Song MK (2015) Arbitration algorithm of FIR filter and optical flow based on ANFIS for visual object tracking. Measurement 75:338–353. https://doi.org/10.1016/j.measurement.2015.07.020

    Article  Google Scholar 

  33. Kaur M, Pooja P (2015) Wavelet and Curvelet transformation based image fusion with ANFIS and SVM. Int J Comput Appl 121(14):13–19. https://doi.org/10.5120/21607-4639

    Article  Google Scholar 

  34. Hongda M, Wang, L Wong KCL, Liu H, Shi P (2011) "Volumetric modeling electromechanics of the heart." In International Workshop on Statistical Atlases and Computational Models of the Heart, pp. 224-233. Springer, Berlin, Heidelberg

  35. Rister B, Horowitz MA, Rubin DL (2017) Volumetric image registration from invariant Keypoints. IEEE Trans Image Process 26(10):4900–4910. https://doi.org/10.1109/TIP.2017.2722689

    Article  MathSciNet  Google Scholar 

  36. Ke Y, Sukthankar R (2004) PCA-SIFT: a more distinctive representation for local image descriptors, In Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004, vol. 2, pp. 506–513. https://doi.org/10.1109/CVPR.2004.1315206

  37. Bersvendsen J et al. (2016) Robust spatio-temporal registration of 4D cardiac ultrasound sequences, vol. 9790, p. 97900F. https://doi.org/10.1117/12.2217005

  38. Hossein-Nejad Z, Nasri M (2017) An adaptive image registration method based on SIFT features and RANSAC transform. Comput Electr Eng 62:524–537. https://doi.org/10.1016/j.compeleceng.2016.11.034

    Article  Google Scholar 

  39. Yi J, Yang H, Yang X, Chen G (2016) Lung motion estimation by robust point matching and spatiotemporal tracking for 4D CT. Comput Biol Med 78(March):107–119. https://doi.org/10.1016/j.compbiomed.2016.09.015

    Article  Google Scholar 

  40. Chung FL, Deng Z, Wang S (2009) An adaptive fuzzy-inference-rule-based flexible model for automatic elastic image registration. IEEE Trans Fuzzy Syst 17(5):995–1010. https://doi.org/10.1109/TFUZZ.2009.2020154

    Article  Google Scholar 

  41. McLeod K, Seiler C, Toussaint N, Sermesant M, Pennec X (2013) Regional analysis of left ventricle function using a cardiac-specific polyaffine motion model. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 7945(LNCS):483–490. https://doi.org/10.1007/978-3-642-38899-6_57

    Article  Google Scholar 

  42. Low DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110

    Article  Google Scholar 

  43. Alessandrini M, de Craene M, Bernard O, Giffard-Roisin S, Allain P, Waechter-Stehle I, Weese J, Saloux E, Delingette H, Sermesant M, D'hooge J (2015) A pipeline for the generation of realistic 3D synthetic echocardiographic sequences: methodology and open-access database. IEEE Trans Med Imaging 34(7):1436–1451. https://doi.org/10.1109/TMI.2015.2396632

    Article  Google Scholar 

  44. Alessandrini M, Heyde B, Queiros S, Cygan S, Zontak M, Somphone O, Bernard O, Sermesant M, Delingette H, Barbosa D, de Craene M, O'Donnell M, Dhooge J (2016) Detailed evaluation of five 3D speckle tracking algorithms using synthetic echocardiographic recordings. IEEE Trans Med Imaging 35(8):1915–1926. https://doi.org/10.1109/TMI.2016.2537848

    Article  Google Scholar 

  45. Olivier B, Heyde B, Alessandrini M, Barbosa D, Camarasu-Pop S, Cervenansky F, Valette S et al. (2014) "Challenge on endocardial three-dimensional ultrasound segmentation (CETUS)." Proceedings MICCAI challenge on echocardiographic three-dimensional ultrasound segmentation (CETUS) 1-8.

  46. Bernard O, Bosch JG, Heyde B, Alessandrini M, Barbosa D, Camarasu-Pop S, Cervenansky F, Valette S, Mirea O, Bernier M, Jodoin PM, Domingos JS, Stebbing RV, Keraudren K, Oktay O, Caballero J, Shi W, Rueckert D, Milletari F, Ahmadi SA, Smistad E, Lindseth F, van Stralen M, Wang C, Smedby O, Donal E, Monaghan M, Papachristidis A, Geleijnse ML, Galli E, D'hooge J (2016) Standardized evaluation system for left ventricular segmentation algorithms in 3D echocardiography. IEEE Trans Med Imaging 35(4):967–977. https://doi.org/10.1109/TMI.2015.2503890

    Article  Google Scholar 

  47. Frisch D point2trimesh - Distance between a point and a triangulated surface in 3D, 2021. [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/52882-point2trimesh-distance-between-point-and-triangulated-surface

  48. Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267–278. https://doi.org/10.3233/IFS-1994-2306

    Article  Google Scholar 

  49. Yager RR, Filev DP (1994) Generation of fuzzy rules by mountain clustering. J Intell Fuzzy Syst 2(3):209–219. https://doi.org/10.3233/IFS-1994-2301

    Article  Google Scholar 

  50. Jammalamadaka SR, Qiu J, Ning N (2019) Predicting a stock portfolio with the multivariate bayesian structural time series model: do news or emotions matter? Int J Artif Intell 17(2):81–104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahammad Hassan Moradi.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

All the authors did not have conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M.S., Moradi, M.H. Adaptive fuzzy-SIFT rule-based registration for 3D cardiac motion estimation. Appl Intell 52, 1615–1629 (2022). https://doi.org/10.1007/s10489-021-02430-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02430-2

Keywords

Navigation