Skip to main content
Log in

Applying inverse stereographic projection to manifold learning and clustering

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In machine learning, a data set is often viewed as a point set distributed on a manifold. Using Euclidean norms to measure the proximity of this data set reduces the efficiency of learning methods. Also, many algorithms like Laplacian Eigenmaps or spectral clustering that require to measure similarity assume the k-Nearest Neighbors of any point are quite equal to the local neighborhood of the point on the manifold using Euclidean norms. In this paper, we propose a new method that intelligently transforms data on an unknown manifold to an n-sphere by the conformal stereographic projection, which preserves the angles and similarities of data in the original manifold. Therefore similarities represent actual similarities of the data in the original space. Experimental results on various problems, including clustering and manifold learning, show the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://scikit-learn.org/stable/datasets/index.html

  2. https://scikit-learn.org/stable/datasets/index.html

  3. https://scikit-learn.org/stable/datasets/index.html

  4. http://vision.ucsd.edu/content/yale-face-database

  5. http://featureselection.asu.edu/old/datasets.php

  6. https://scikit-learn.org/0.19/datasets/mldata.html

  7. https://jundongl.github.io/scikit-feature/datasets.html

  8. https://scikit-learn.org/stable/datasets/index.html

  9. http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html

  10. https://github.com/2232088201/Python-sparse-subspace-clustering-ADMM

  11. https://github.com/mitscha

References

  1. Arsigny V, Fillard P, Pennec X, Ayache N (2006) Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 56(2):411– 421

    Article  Google Scholar 

  2. Aziere N, Todorovic S (2019) Ensemble deep manifold similarity learning using hard proxies. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7299–7307

  3. Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Proc Syst 14:585–591

    Google Scholar 

  4. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  Google Scholar 

  5. Cai W (2015) A manifold learning framework for both clustering and classification. Knowl Based Syst 89:641–653

    Article  Google Scholar 

  6. Carmo MP (1992) Riemannian geometry. Birkhäuser

  7. Casselman B (2014) Stereographic projection, feature column

  8. Chen D, Lv J, Yin J, Zhang H, Li X (2019) Angle-based embedding quality assessment method for manifold learning. Neural Comput Applic 31(3):839–849

    Article  Google Scholar 

  9. Chen G (2018) Scalable spectral clustering with cosine similarity. In: 2018 24th International conference on pattern recognition (ICPR), pp 314–319

  10. Donoho D (2003) Hessian eigenmaps: new tools for nonlinear dimensionality reduction. Proc. Nat Acad Sci 100:5591– 5596

    Article  Google Scholar 

  11. Elhamifar E, Vidal R (2009) Sparse subspace clustering. In: 2009 IEEE Conference on computer vision and pattern recognition, pp 2790–2797

  12. Elhamifar E, Vidal R (2011) Sparse manifold clustering and embedding. Adv Neural Inf Proc Syst 24:55–63

    Google Scholar 

  13. Fletcher PT, Joshi S (2007) Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process 87(2):250–262

    Article  Google Scholar 

  14. Friedman JH, Stuetzle W (1981) Projection pursuit regression. J Am Stat Assoc 76(376):817–23

    Article  MathSciNet  Google Scholar 

  15. Gene HG, Charles F (1996) Matrix computations. Johns Hopkins Universtiy Press, 3rd edtion

  16. Goh A, Vidal R (2008) Clustering and dimensionality reduction on Riemannian manifolds. In: 2008 IEEE Conference on computer vision and pattern recognition, pp 1–7

  17. Harandi M, Salzmann M, Hartley R (2017) Dimensionality reduction on SPD manifolds: The emergence of geometry-aware methods. IEEE Trans Pattern Anal Mach Intell 40(1):48–62

    Article  Google Scholar 

  18. Harandi MT, Salzmann M, Hartley R (2014) From manifold to manifold: Geometry-aware dimensionality reduction for SPD matrices. In: European conference on computer vision, Springer, pp 17–32

  19. He X, Yan S, Hu Y, Niyogi P, Zhang HJ (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340

    Article  Google Scholar 

  20. Hechmi S, Gallas A, Zagrouba E (2019) Multi-kernel sparse subspace clustering on the Riemannian manifold of symmetric positive definite matrices. Pattern Recogn Lett 125:21–27

    Article  Google Scholar 

  21. Huang Z, Wang R, Li X, Liu W, Shan S, Van Gool L, Chen X (2017) Geometry-aware similarity learning on spd manifolds for visual recognition. IEEE Trans Circ Syst Video Technol 28(10):2513–2523

    Article  Google Scholar 

  22. Jiao J, Mo X, Shen C (2010) Image clustering via sparse representation. In: International conference on multimedia modeling, Springer, pp 761–766

  23. Jiang B, Ding C, Luo B (2018) Robust data representation using locally linear embedding guided PCA. Neurocomputing 275:523–532

    Article  Google Scholar 

  24. Kang Z, Peng C, Cheng Q (2017) Kernel-driven similarity learning. Neurocomputing 267:210–219

    Article  Google Scholar 

  25. Kang Z, Xu H, Wang B, Zhu H, Xu Z (2019) Clustering with similarity preserving. Neurocomputing 365:211–218

    Article  Google Scholar 

  26. Kayo O (2006) LOCALLY LINEAR EMBEDDING ALGORITHM–Extensions and applications

  27. Li Y, Lu R (2019) Applying Ricci flow to high dimensional manifold learning. Sci China Inf Sci 62(9):192101

    Article  MathSciNet  Google Scholar 

  28. Lin T, Zha H, Lee SU (2006) Riemannian manifold learning for nonlinear dimensionality reduction. In: European conference on computer vision, Springer, pp 44–55

  29. Liu X, Cheng HM, Zhang ZY (2019) Evaluation of community detection methods. IEEE Transactions on Knowledge and Data Engineering

  30. Liu X, Ma Z (2020) Kernel-based subspace learning on Riemannian manifolds for visual recognition. Neural Process Lett 51(1):147–165

    Article  Google Scholar 

  31. Liu Z, Wang W, Jin Q (2016) Manifold alignment using discrete surface Ricci flow. CAAI Trans Intell Technol 1(3):285–292

    Article  Google Scholar 

  32. Long B, Zhang Z, Wu X, Yu PS (2006) Spectral clustering for multi-type relational data. In: Proceedings of the 23rd international conference on Machine learning, pp 585–592

  33. Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Proc 41(12):3397–3415

    Article  Google Scholar 

  34. Meila M, Shi J (2001) A random walks view of spectral segmentation. In: Proceedings of the Eighth internationalworkshop on artificial intelligence and statistics

  35. Ng A, Jordan M, Weiss Y (2001) On spectral clustering: Analysis and an algorithm. Adv Neural Inf Proc Syst 14:849–56

    Google Scholar 

  36. Pati YC, Rezaiifar R, Krishnaprasad PS (1993) Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Proceedings of 27th Asilomar conference on signals, systems and computers, pp 40–44

  37. Ratcliffe JG, Axler S, Ribet KA (2006) Foundations of hyperbolic manifolds. Springer, New York

    Google Scholar 

  38. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  39. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  40. Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. science 290(5500):2319–2323

    Article  Google Scholar 

  41. Toponogov VA (2006) Differential geometry of curves and surfaces. Birkhũser-Verlag

  42. Tschannen M, Bölcskei H (2018) Noisy subspace clustering via matching pursuits. IEEE Trans Inf Theory 64(6):4081–4104

    Article  MathSciNet  Google Scholar 

  43. Tu LW (2011) An introduction to manifolds. Springer

  44. Turaga P, Anirudh R, Chellappa R (2020) Manifold Learning. Computer Vision: A Reference Guide 1–6

  45. Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

    Article  MathSciNet  Google Scholar 

  46. Wang Q, Downey C, Wan L, Mansfield PA, Moreno IL (2018) Speaker diarization with lstm. In: 2018 IEEE International conference on acoustics, speech and signal processing (ICASSP), pp 5239–5243

  47. Wang Y, Jiang Y, Wu Y, Zhou ZH (2011) Spectral clustering on multiple manifolds. IEEE Trans Neural Netw 22(7):1149–1161

    Article  Google Scholar 

  48. Wierzchoń ST, Kłopotek MA (2020) Spectral cluster maps versus spectral clustering. In: International conference on computer information systems and industrial management, Springer, pp 472–484

  49. Wilson RC, Hancock ER, Pekalska E, Duin RP (2014) Spherical and hyperbolic embeddings of data. IEEE Trans Pattern Anal Mach Intell 36(11):2255–69

    Article  Google Scholar 

  50. You C, Robinson D, Vidal R (2016) Scalable sparse subspace clustering by orthogonal matching pursuit. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3918–3927

  51. Zelnik-Manor L, Perona P (2004) Self-tuning spectral clustering. Adv Neural Inf Proc Syst 17:1601–1608

    Google Scholar 

  52. Zhang Z, Wang J (2006) MLLE: Modified locally linear embedding using multiple weights. Adv Neural Inf Proc Syst 19:1593–1600

    Google Scholar 

  53. Zhang Z, Zha H (2004) Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J Sci Comput 26(1):313–338

    Article  MathSciNet  Google Scholar 

  54. Zheng L, Qiu G, Huang J (2018) Riemannian competitive learning for symmetric positive definite matrices clustering. Neurocomputing 295:153–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Rezghi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eybpoosh, K., Rezghi, M. & Heydari, A. Applying inverse stereographic projection to manifold learning and clustering. Appl Intell 52, 4443–4457 (2022). https://doi.org/10.1007/s10489-021-02513-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02513-0

Keywords

Navigation