Skip to main content
Log in

A new method for positive and unlabeled learning with privileged information

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Positive and unlabeled learning (PU learning) has been studied to address the situation in which only positive and unlabeled examples are available. Most of the previous work has been devoted to identifying negative examples from the unlabeled data, so that the supervised learning approaches can be applied to build a classifier. However, for the remaining unlabeled data, they either exclude them from the learning phase or force them to belong to a class, and this always limits the performance of PU learning. In addition, previous PU methods assume the training data and the testing data have the same features representations. However, we can always collect the features that the training data have while the test data do not have, these kinds of features are called privileged information. In this paper, we propose a new method, which is based on similarity approach for the problem of positive and unlabeled learning with privileged information (SPUPIL), which consists of two steps. The proposed SPUPIL method first conducts KNN method to generate the similarity weights and then the similarity weights and privileged information are incorporated to the learning model based on Ranking SVM to build a more accurate classifier. We also use the Lagrangian method to transform the original model into its dual problem, and solve it to obtain the classifier. Extensive experiments on the real data sets show that the performance of the SPUPIL is better than the state-of-the-art PU learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://github.com/csuldw/MachineLearning/tree/master/dataset

  2. http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html

  3. http://attributes.kyb.tuebingen.mpg.de

  4. https://download.csdn.net/download/qq$_$21034239/9792594

  5. http://www.image-net.org/challenges/LSVRC/2012/index

  6. http://cs-people.bu.edu/hekun/data/TALR/NUSWIDE.zip

References

  1. Xiong Y, Zuo R (2021) A positive and unlabeled learning algorithm for mineral prospectivity mapping. Comput. Geosci 147:104667. https://doi.org/10.1016/j.cageo.2020.104667

    Article  Google Scholar 

  2. Gong C, Shi H, Liu T, Zhang C, Yang J, Tao D (2021) Loss decomposition and centroid estimation for positive and unlabeled learning. IEEE Trans Pattern Anal Mach Intell 43(3):918–932. https://doi.org/10.1109/TPAMI.2019.2941684

    Article  Google Scholar 

  3. Latulippe M, Drouin A, Giguère P, Laviolette F (2013) Accelerated robust point cloud registration in natural environments through positive and unlabeled learning. In: IJCAI 2013 proceedings of the 23rd international joint conference on artificial intelligence, August 3-9, 2013. http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6848, Beijing, China, pp 2480–2487

  4. Scott C, Blanchard G (2009) Novelty detection: Unlabeled data definitely help,. In: Proceedings of the twelfth international conference on artificial intelligence and Statistics, AISTATS 2009, April 16-18 2009. http://proceedings.mlr.press/v5/scott09a.html, Clearwater, Beach, Florida, USA, pp 464–471

  5. Liu B, Dai Y, Li X, Lee WS, Yu PS (2003) Building text classifiers using positive and unlabeled examples. In: Proceedings of the 3rd IEEE international conference on data mining (ICDM 2003), 19-22 December 2003. https://doi.org/10.1109/ICDM.2003.1250918, Melbourne, Florida, USA, pp 179–188

  6. Joachims T (2002) Optimizing search engines using clickthrough data. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, July 23-26, 2002. https://doi.org/10.1145/775047.775067, Edmonton, Alberta, Canada, pp 133–142

  7. Liu B, Lee WS, Yu PS, Li X (2002) Partially supervised classification of text documents. In: Machine learning, proceedings of the nineteenth international conference (ICML 2002), July 8-12, 2002, University of New South Wales, Sydney, Australia, pp 387–394

  8. Li X, Liu B (2003) Learning to classify texts using positive and unlabeled data. In: IJCAI-03, Proceedings of the eighteenth international joint conference on artificial intelligence, August 9-15, 2003. http://ijcai.org/Proceedings/03/Papers/087.pdf, Acapulco, Mexico, pp 587–594

  9. Yu H, Han J, Chang KC (2004) PEBL: web page classification without negative examples. IEEE Trans Knowl Data Eng 16(1):70–81. https://doi.org/10.1109/TKDE.2004.1264823

    Article  Google Scholar 

  10. Lee WS, Liu B (2003) Learning with positive and unlabeled examples using weighted logistic regression. In: Machine learning, proceedings of the twentieth international conference (ICML 2003), August 21-24, 2003. http://www.aaai.org/Library/ICML/2003/icml03-060.php, Washington, DC, USA, pp 448–455

  11. Elkan C, Noto K (2008) Learning classifiers from only positive and unlabeled data. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, August 24-27, 2008. https://doi.org/10.1145/1401890.1401920, Las Vegas, Nevada, USA, pp 213–220

  12. Du Plessis MC, Niu G, Sugiyama M (2015) Convex formulation for learning from positive and unlabeled data. In: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, 6-11 July 2015. http://jmlr.org/proceedings/papers/v37/plessis15.html, Lille, France, pp 1386–1394

  13. Du Plessis MC, Niu G, Sugiyama M (2014) Analysis of learning from positive and unlabeled data. In: NIPS 2014, pp 703–711

  14. Fernández-Francos D, Fontenla-Romero O, Alonso-Betanzos A (2016) One-class classification algorithm based on convex hull. In: 24th european symposium on artificial neural networks, ESANN 2016, April 27–29, 2016. http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2016-136.pdf, Bruges, Belgium

  15. Khan SS, Madden MG (2014) One-class classification: taxonomy of study and review of techniques. Knowl Eng Rev 29(3):345–374. https://doi.org/10.1017/S026988891300043X

    Article  Google Scholar 

  16. Andrew AM (2000) An introduction to support vector machines and other kernel-based learning methods by nello christianini and john shawe-taylor, cambridge university press, cambridge, 2000, xiii+ 189 pp., ISBN 0-521-78019-5 (hbk, £ 27.50). Robotica 18(6):687–689. http://journals.cambridge.org/action/displayAbstract?aid=73725

    Google Scholar 

  17. Rabaoui A, Davy M, Rossignol S, Lachiri Z, Ellouze N (2007) Improved one-class SVM classifier for sounds classification. In: Fourth IEEE international conference on advanced video and signal based surveillance, AVSS 2007, 5-7 September 2007. https://doi.org/10.1109/AVSS.2007.4425296, Queen Mary, University of London, London, United Kingdom, pp 117–122

  18. Shaikh TA, Ali R, Beg MMS (2020) Transfer learning privileged information fuels CAD diagnosis of breast cancer. Mach Vis Appl 31(1-2):9. https://doi.org/10.1007/s00138-020-01058-5

    Article  Google Scholar 

  19. Wu Z, Weise T, Zou L, Sun F, Tan M (2020) Skeleton based action recognition using a stacked denoising autoencoder with constraints of privileged information. arXiv:2003.05684

  20. Pechyony D, Vapnik V On the theory of learning with privileged information, nips–2010, Digit database (with Poetic and Ying-Yang descriptions by N. Pavlovitch). http://ml.nec-labs.com/download/data/svm+/mnist

  21. Wang S, Chen S, Chen T, Shi X (2018) Learning with privileged information for multi-label classification. Pattern Recogn 81:60–70. https://doi.org/10.1016/j.patcog.2018.03.033

    Article  Google Scholar 

  22. Sharmanska V, Quadrianto N, Lampert C. H (2013) Learning to rank using privileged information. In: IEEE international conference on computer vision, ICCV 2013, December 1-8, 2013. https://doi.org/10.1109/ICCV.2013.107, Sydney, Australia, pp 825–832

  23. Feyereisl J, Aickelin U (2012) Privileged information for data clustering. Inf Sci 194:4–23. https://doi.org/10.1016/j.ins.2011.04.025

    Article  Google Scholar 

  24. Calvo B, Larrañaga P., Lozano JA (2007) Learning bayesian classifiers from positive and unlabeled examples. Pattern Recogn Lett 28(16):2375–2384. https://doi.org/10.1016/j.patrec.2007.08.003

    Article  Google Scholar 

  25. Xie C, Cheng Q, Liang J, Chen L, Xiao Y (2020) Collective loss function for positive and unlabeled learning. arXiv:2005.03228

  26. Kato M, Teshima T, Honda J (2019) Learning from positive and unlabeled data with a selection bias. In: 7th International Conference on Learning Representations, ICLR 2019, May 6-9, 2019. https://openreview.net/forum?id=rJzLciCqKm. OpenReview.net, New Orleans, LA, USA

  27. Xiao Y, Liu B, Yin J, Cao L, Zhang C, Hao Z (2011) Similarity-based approach for positive and unlabeled learning. In: IJCAI 2011 Proceedings of the 22nd international joint conference on artificial intelligence, July 16-22, 2011. https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-265, Barcelona, Catalonia, Spain, pp 1577–1582

  28. Nguyen MN, Li X, Ng SK (2011) Positive unlabeled learning for time series classification. In: International joint conference on artificial intelligence

  29. Li W, Guo Q, Elkan C (2011) A positive and unlabeled learning algorithm for one-class classification of remote-sensing data. IEEE Trans Geosci Remote Sens 49(2):717–725. https://doi.org/10.1109/TGRS.2010.2058578

    Article  Google Scholar 

  30. Liu R, Li W, Liu X, Lu X, Li T, Guo Q (2018) An ensemble of classifiers based on positive and unlabeled data in one-class remote sensing classification. IEEE J Sel Top Appl Earth Observ Remote Sens 11(2):572–584. https://doi.org/10.1109/JSTARS.2017.2789213

    Article  Google Scholar 

  31. Zhu F, Ye N, Yu W, Xu S, Li G (2014) Boundary detection and sample reduction for one-class support vector machines. Neurocomputing 123:166–173. https://doi.org/10.1016/j.neucom.2013.07.002

    Article  Google Scholar 

  32. Gao L, Zhang L, Liu C, Wu S (2020) Handling imbalanced medical image data: A deep-learning-based one-class classification approach. Artif Intell Med 108:101935. https://doi.org/10.1016/j.artmed.2020.101935

    Article  Google Scholar 

  33. Shi H, Pan S, Yang J, Gong C (2018) Positive and unlabeled learning via loss decomposition and centroid estimation. In: Proceedings of the twenty-seventh international joint conference on artificial intelligence, IJCAI 2018, July 13-19, 2018. https://doi.org/10.24963/ijcai.2018/373, Stockholm, Sweden, pp 2689–2695

  34. Gao W, Wang L, Li Y, Zhou Z (2016) Risk minimization in the presence of label noise. In: Proceedings of the thirtieth AAAI conference on artificial intelligence, February 12-17, 2016. http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12372, Phoenix, Arizona, USA, pp 1575–1581

  35. Zhou JT, Pan SJ, Tsang IW (2012) Multi-view positive and unlabeled learning. In: Proceedings of the 4th asian conference on machine learning, ACML 2012, November 4-6, 2012. http://jmlr.csail.mit.edu/proceedings/papers/v25/zhou12.html, Singapore, pp 555–570

  36. Li W, Niu L, Xu D (2014) Exploiting privileged information from web data for image categorization. In: Computer Vision - ECCV 2014 - 13th european conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V. https://doi.org/10.1007/978-3-319-10602-1_29, pp 437–452

  37. Wang Z, Ji Q (2015) Classifier learning with hidden information. In: IEEE conference on computer vision and pattern recognition, CVPR 2015, June 7-12, 2015. https://doi.org/10.1109/CVPR.2015.7299131, Boston, MA, USA, pp 4969–4977

  38. Tang J, Tian Y, Zhang P, Liu X (2018) Multiview privileged support vector machines. IEEE Trans Neural Netw Learn Syst 29(8):3463–3477. https://doi.org/10.1109/TNNLS.2017.2728139

    Article  MathSciNet  Google Scholar 

  39. Xu W, Liu W, Chi H, Qiu S, Jin Y (2019) Self-paced learning with privileged information. Neurocomputing 362:147–155. https://doi.org/10.1016/j.neucom.2019.06.072

    Article  Google Scholar 

  40. Yang X, Wang M, Tao D (2019) Person re-identification with metric learning using privileged information. arXiv:1904.05005

  41. Kamienny P, Arulkumaran K, Behbahani F, Boehmer W, Whiteson S (2020) Privileged information dropout in reinforcement learning. arXiv:2005.09220

  42. Gu Z, Niu L, Zhang L (2019) Hard pixels mining: Learning using privileged information for semantic segmentation. arXiv:1906.11437

  43. Vapnik V, Vashist A (2009) A new learning paradigm: Learning using privileged information. Neural Netw 22(5-6):544–557. https://doi.org/10.1016/j.neunet.2009.06.042

    Article  Google Scholar 

  44. Fouad S, Tiño P, Raychaudhury S, Schneider P (2013) Incorporating privileged information through metric learning. IEEE Trans Neural Netw Learn Syst 24(7):1086–1098. https://doi.org/10.1109/TNNLS.2013.2251470

    Article  Google Scholar 

  45. Xu X, Li W, Xu D (2015) Distance metric learning using privileged information for face verification and person re-identification. IEEE Trans Neural Netw Learn Syst 26(12):3150–3162

    Article  MathSciNet  Google Scholar 

  46. Chevalier M, Thome N, Hénaff G, Cord M (2018) Classifying low-resolution images by integrating privileged information in deep cnns. Pattern Recogn Lett 116:29–35. https://doi.org/10.1016/j.patrec.2018.09.007

    Article  Google Scholar 

  47. Chen Y, Jin X, Feng J, Yan S (2017) Training group orthogonal neural networks with privileged information. In: Proceedings of the twenty-sixth international joint conference on artificial intelligence, IJCAI 2017, August 19-25, 2017. https://doi.org/10.24963/ijcai.2017/212, Melbourne, Australia, pp 1532–1538

  48. Tang F, Xiao C, Wang F, Zhou J, Lehman LH (2019) Retaining privileged information for multi-task learning. In: Teredesai A, Kumar V, Li Y, Rosales R, Terzi E, Karypis G (eds) Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, KDD 2019, August 4-8, 2019. https://doi.org/10.1145/3292500.3330907. ACM, Anchorage, AK, USA, pp 1369–1377

  49. Lee W, Lee J, Kim D, Ham B (2020) Learning with privileged information for efficient image super-resolution. arXiv:2007.07524

  50. Javid M, Hamidzadeh J (2020) An active multi-class classification using privileged information and belief function. Int J Mach Learn Cybern 11(3):511–524. https://doi.org/10.1007/s13042-019-00991-w

    Article  Google Scholar 

  51. Cai F (2011) Advanced learning approaches based on svm+ methodology. University of Minnesota - Twin Cities

  52. Liu J, Zhu W, Zhong P (2013) A new multi-class support vector algorithm based on privileged information. J Inform Comput Sci 10(2):443–450

    Google Scholar 

  53. Zhong P, Fukushima M (2006) A new multi-class support vector algorithm. Optim Methods Softw 21(3):359–372. https://doi.org/10.1080/10556780500094812

    Article  MathSciNet  Google Scholar 

  54. Ji Y, Sun S, Lu Y (2012) Multitask multiclass privileged information support vector machines. In: Proceedings of the 21st international conference on pattern recognition, ICPR 2012, November 11-15, 2012. http://ieeexplore.ieee.org/document/6460630/, Tsukuba, Japan, pp 2323–2326

  55. Tang F, Tiño P, Gutiérrez PA, Chen H (2014) Support vector ordinal regression using privileged information. In: 22th european symposium on artificial neural networks, ESANN 2014, April 23–25, 2014. http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2014-58.pdf, Bruges, Belgium

  56. Yang H, Patras I (2013) Privileged information-based conditional regression forest for facial feature detection. In: 10th IEEE international conference and workshops on automatic face and gesture recognition, FG 2013, April 22-26, 2013. https://doi.org/10.1109/FG.2013.6553766, Shanghai China, pp 1–6

  57. Pfannschmidt L, Jakob J, Hinder F, Biehl M, Tiño P, Hammer B (2020) Feature relevance determination for ordinal regression in the context of feature redundancies and privileged information. Neurocomputing 416:266–279. https://doi.org/10.1016/j.neucom.2019.12.133

    Article  Google Scholar 

  58. Gautam C, Tiwari A, Tanveer M (2020) AEKOC+: kernel ridge regression-based auto-encoder for one-class classification using privileged information. Cogn Comput 12 (2):412–425. https://doi.org/10.1007/s12559-019-09705-4

    Article  Google Scholar 

  59. Jung C, Shen Y, Jiao L (2015) Learning to rank with ensemble ranking SVM. Neural Process Lett 42(3):703–714. https://doi.org/10.1007/s11063-014-9382-5

    Article  Google Scholar 

  60. Cao Y, Xu J, Liu T, Li H, Huang Y, Hon H (2006) Adapting ranking SVM to document retrieval. In: SIGIR 2006: Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval, August 6-11, 2006. https://doi.org/10.1145/1148170.1148205, Seattle, Washington, USA, pp 186–193

  61. Liang X, Zhu L, Huang D (2017) Multi-task ranking SVM for image cosegmentation. Neurocomputing 247:126–136. https://doi.org/10.1016/j.neucom.2017.03.060

    Article  Google Scholar 

  62. Liu B, Lee WS, Yu PS, Li X (2003) Partially supervised classification of text documents. In: Nineteenth international conference on machine learning

  63. Qi Z, Tian Y, Shi Y (2014) A new classification model using privileged information and its application. Neurocomputing 129:146–152. https://doi.org/10.1016/j.neucom.2013.09.045

    Article  Google Scholar 

  64. Everett H (1963) Generalized lagrange multiplier method for solving problems of optimum allocation of resources. Oper Res 11(3):399–417

    Article  MathSciNet  Google Scholar 

  65. Sellamanickam S, Garg P, Selvaraj SK (2011) A pairwise ranking based approach to learning with positive and unlabeled examples. In: Proceedings of the 20th ACM Conference on information and knowledge management, CIKM 2011, October 24-28, 2011. https://doi.org/10.1145/2063576.2063675, Glasgow, United Kingdom, pp 663–672

  66. Li W, Dai D, Tan M, Xu D, Gool LV (2016) Fast algorithms for linear and kernel SVM+. In: 2016 IEEE conference on computer vision and pattern recognition, CVPR 2016, June 27-30, 2016. https://doi.org/10.1109/CVPR.2016.248, Las Vegas, NV, USA, pp 2258–2266

  67. Nguyen MN, Li X, Ng SK (2011) Positive unlabeled leaning for time series classification. In: 2011 IJCAI Proceedings of the 22nd international joint conference on artificial intelligence, July 16-22, 2011, Barcelona, Catalonia, Spain

  68. Kiryo R, Niu G, du Plessis M. C, Sugiyama M. C (2017) Positive-unlabeled learning with non-negative risk estimator. In: Advances in neural information processing systems 30: annual conference on neural information processing systems 2017, December 4-9, 2017. http://papers.nips.cc/paper/6765-positive-unlabeled-learning-with-non-negative-risk-estimator, Long Beach, CA, USA, pp 1674–1684

  69. Zhang J, Wang Z, Meng J, Tan Y, Yuan J (2019) Boosting positive and unlabeled learning for anomaly detection with multi-features. IEEE Trans Multimed 21(5):1332–1344. https://doi.org/10.1109/TMM.2018.2871421

    Article  Google Scholar 

  70. Oppedal K, Eftestøl T, Engan K, Beyer M. K, Aarsland D (2015) Classifying dementia using local binary patterns from different regions in magnetic resonance images. Int J Biomed Imaging 2015:572567:1–572567:14. https://doi.org/10.1155/2015/572567

    Article  Google Scholar 

  71. Shan C (2012) Learning local binary patterns for gender classification on real-world face images. Pattern Recogn Lett 33(4):431–437. https://doi.org/10.1016/j.patrec.2011.05.016

    Article  Google Scholar 

  72. Huang CP, Hsieh CH, Lai KT, Huang WY (2012) Human action recognition using histogram of oriented gradient of motion history image. In: First international conference on instrumentation

  73. Kobayashi T (2013) BFO meets HOG: feature extraction based on histograms of oriented p.d.f. gradients for image classification. In: 2013 IEEE conference on computer vision and pattern recognition, June 23-28, 2013. https://doi.org/10.1109/CVPR.2013.102, Portland, OR, USA, pp 747–754

  74. Bay H, Ess A, Tuytelaars T, Gool LV (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359. https://doi.org/10.1016/j.cviu.2007.09.014

    Article  Google Scholar 

  75. Gardezi SJS, Faye I, Adjed F, Kamel N, Eltoukhy MM (2017) Mammogram classification using curvelet glcm texture features and gist features. In: Advances in intelligent systems & computing, pp 705–713

  76. Vedaldi A, Fulkerson B (2010) Vlfeat: an open and portable library of computer vision algorithms. In: Proceedings of the 18th international conference on multimedia 2010, October, 25-29, 2010. https://doi.org/10.1145/1873951.1874249, Firenze, Italy, pp 1469–1472

  77. Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: A deep convolutional activation feature for generic visual recognition. In: Proceedings of the 31th international conference on machine learning, ICML 2014, June 21-26, 2014. http://proceedings.mlr.press/v32/donahue14.html, Beijing China, pp 647–655

  78. Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30. http://jmlr.org/papers/v7/demsar06a.html

    MathSciNet  MATH  Google Scholar 

  79. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the anonymous referees for their significant comments and suggestions. This work was supported in part by the Natural Science Foundation of China under Grant 62076074, 61876044 and 61672169, in part by Guangdong Basic and Applied Basic Research Foundation Grant 2020A1515010670 and 2020A1515011501, in part by the Science and TechnologyPlanning Project of Guangzhou under Grant 202002030141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

By introducing Lagrange multipliers αa ≥ 0, αb ≥ 0, αc ≥ 0, βa ≥ 0, βb ≥ 0, βc ≥ 0, λa ≥ 0, λb ≥ 0 and λc ≥ 0, we can obtain the following Lagrange function L for objective function (2):

$$ \begin{array}{@{}rcl@{}} L &= &\frac{1}{2} \left [ \left (\mathbf{w},\mathbf{w}\right ) + \gamma \left ({\mathbf{w}^{\mathbf{*}}},{\mathbf{w}^{\mathbf{*}}} \right ) \right ] + C_{1} \sum\limits_{a=1}^{S_{1}} \left [ \left \langle \mathbf{w}^{\mathbf{*}},\mathbf{x}_{a}^{*} \right \rangle + \theta_{a} \xi_{a}^{*} \right ] \\ &&+ C_{2} \sum\limits_{b=1}^{S_{2}}{m}^{-}(\mathbf{x}_{b})\left[ \left\langle \mathbf{w}^{\mathbf{*}},\mathbf{x}_{b}^{*} \right\rangle +\theta_{b} \xi_{b}^{*} \right]\\ &&+ C_{3} \sum\limits_{c=1}^{S_{3}}m^{+}(\mathbf{x}_{c})\left [ \left \langle \mathbf{w}^{\mathbf{*}},\mathbf{x}_{c}^{*} \right \rangle + \theta_{c} \xi_{c}^{*} \right ]\\ &&- \sum\limits_{a = 1}^{S_{1}}\alpha_{a} \left [ \left \langle \mathbf{w,x}_{a} \right \rangle - 1 + \left \langle \mathbf{w}^{\mathbf{*}},\mathbf{x}_{a}^{*} \right \rangle + \xi_{a}^{*} \right ] \\ &&- \sum\limits_{b = 1}^{S_{2}}\alpha_{b} \left [ \left \langle \mathbf{w,x}_{b} \right \rangle - 1 + \left \langle \mathbf{w}^{\mathbf{*}},\mathbf{x}_{b}^{*} \right \rangle + \xi_{b}^{*} \right ] \\ &&- \sum\limits_{c = 1}^{S_{3}}\alpha_{c} \left [ \left \langle \mathbf{w,x}_{c} \right \rangle - 1 + \left \langle \mathbf{w}^{\mathbf{*}},\mathbf{x}_{c}^{*} \right \rangle + \xi_{c}^{*} \right ] \\ &&- \sum\limits_{a = 1}^{S_{1}}\beta_{a} \left \langle \mathbf{w}^{\mathbf{*}},\mathbf{x}_{a}^{*} \right \rangle - \sum\limits_{b = 1}^{S_{2}}\beta_{b} \left \langle \mathbf{w}^{\mathbf{*}},\mathbf{x}_{b}^{*} \right \rangle - \sum\limits_{c = 1}^{S_{3}}\beta_{c} \left \langle \mathbf{w}^{\mathbf{*}},\mathbf{x}_{c}^{*} \right \rangle \\ &&- \sum\limits_{a = 1}^{S_{1}}\lambda_{a} \xi_{a}^{*} - \sum\limits_{b = 1}^{S_{2}}\lambda_{b} \xi_{b}^{*} - \sum\limits_{c = 1}^{S_{3}}\lambda_{c} \xi_{c}^{*} \end{array} $$
(8)

Setting the partial derivatives of the L with respect to w, w, \(\xi _{a}^{*}\), \(\xi _{b}^{*}\), \(\xi _{c}^{*}\) equal to zeros respectively, we can obtain:

$$ \begin{array}{@{}rcl@{}} \frac{\partial L}{\partial\mathbf{w}} &=& \mathbf{w} - \sum\limits_{a = 1}^{S_{1}} \alpha_{a} \mathbf{x}_{a} - \sum\limits_{b = 1}^{S_{2}} \alpha_{b} \mathbf{x}_{b} - \sum\limits_{c = 1}^{S_{3}} \alpha_{c} \mathbf{x}_{c} = 0 \end{array} $$
(9)
$$ \begin{array}{@{}rcl@{}} \frac{\partial L}{\partial\mathbf{w}^{*}} &= &\gamma \mathbf{w}^{*} + \sum\limits_{a = 1}^{S_{1}}\left( C_{1} - \alpha_{a} - \beta_{a} \right) \mathbf{x}_{a}^{*} \\ &&+ \sum\limits_{b = 1}^{S_{2}} \left (C_{2} m^{-}(\mathbf{x}_{b}) - \alpha_{b} - \beta_{b}\right ) \mathbf{x}_{b}^{*} \\ &&+ \sum\limits_{c = 1}^{S_{3}} \left (C_{3} m^{+}(\mathbf{x}_{c}) - \alpha_{c} - \beta_{c}\right ) \mathbf{x}_{c}^{*} = 0 \end{array} $$
(10)
$$ \begin{array}{@{}rcl@{}} \frac{\partial L}{\partial \xi_{a}^{*}}& = &C_{1}\theta_{a} - \alpha_{a} - \lambda_{a} = 0 \end{array} $$
(11)
$$ \begin{array}{@{}rcl@{}} \frac{\partial L}{\partial \xi_{b}^{*}} &=& C_{2} m^{-}(\mathbf{x}_{b})\theta_{b} - \alpha_{b} - \lambda_{b} = 0 \end{array} $$
(12)
$$ \begin{array}{@{}rcl@{}} \frac{\partial L}{\partial \xi_{c}^{*}} &=& C_{3} m^{+}(\mathbf{x}_{c})\theta_{c} - \alpha_{c} - \lambda_{c} = 0 \end{array} $$
(13)

After substituting (9)-(13) into (8), we can obtain the dual problem (3). This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Liu, Q. & Xiao, Y. A new method for positive and unlabeled learning with privileged information. Appl Intell 52, 2465–2479 (2022). https://doi.org/10.1007/s10489-021-02528-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02528-7

Keywords

Navigation