Skip to main content
Log in

Social velocity based spatio-temporal anomalous daily activity discovery of social media users

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Anomalous daily activities are the activities that do not fit into normal daily behavior of social media users. Discovering anomalous daily activities is important for protecting social media users from harmful content and providing correct information about populated accounts, products, or hashtags. However, discovering anomalous daily activities is challenging due to hardness of detection of bot applications, complexity of anomalous activities, and the big data nature of social media datasets. In this study, a novel method that discovers anomalous daily activities with respect to spatio-temporal information of social media datasets is proposed. For this purpose, an interest measure, named as social velocity, is proposed to discover anomalous daily activities that is based on spatial distance and temporal difference of successive posts. Two novel algorithms are proposed that use proposed method and interest measure and experimentally evaluated on a real Twitter dataset. The experimental results show that proposed algorithms are successful for discovering anomalous activities of social media users with respect to spatio-temporal information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chu Z, Gianvecchio S, Wang H, Jajodia S (2012) Detecting automation of twitter accounts: Are you a human, bot, or cyborg?. IEEE Transactions on Dependable and Secure Computing 9(6):811–824. https://doi.org/10.1109/TDSC.2012.75

    Article  Google Scholar 

  2. Yu R, Qiu H, Wen Z, Lin C, Liu Y (2016) A survey on social media anomaly detection. ACM SIGKDD Explorations Newsletter 18(1):1–14. https://doi.org/10.1145/2980765.2980767

    Article  Google Scholar 

  3. Kaur R, Singh S (2016) A survey of data mining and social network analysis based anomaly detection techniques. Egyptian Informatics Journal 17(2):199–216. https://doi.org/10.1016/j.eij.2015.11.004

    Article  Google Scholar 

  4. Savage D, Zhang X, Yu X, Chou P, Wang Q (2014) Anomaly detection in online social networks. Soc Networks 39:62–70. https://doi.org/10.1016/j.socnet.2014.05.002

    Article  Google Scholar 

  5. Bindu PV, Thilagam PS (2016) Mining social networks for anomalies: Methods and challenges. J Netw Comput Appl 68:213–229. https://doi.org/10.1016/j.jnca.2016.02.021

    Article  Google Scholar 

  6. Gao Y, Wang S, Padmanabhan A, Yin J, Cao G (2018) Mapping spatiotemporal patterns of events using social media: a case study of influenza trends. Int J Geogr Inf Sci 32(3):425–449. https://doi.org/10.1080/13658816.2017.1406943

    Article  Google Scholar 

  7. Chae J, Thom D, Bosch H, Jang Y, Maciejewski R, Ebert D S, Ertl T (2012) Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition. In: 2012 IEEE conference on visual analytics science and technology (VAST), pp 143–152

  8. Chalapathy R, Chawla S (2019) Deep learning for anomaly detection: A survey. CoRR abs/1901.03407, arXiv:1901.03407

  9. Wang Z, Joo V, Tong C, Xin X, Chin H C (2014) Anomaly detection through enhanced sentiment analysis on social media data. In: 2014 IEEE 6th international conference on cloud computing technology and science, pp 917–922

  10. Tonon A, Cudré-Mauroux P, Blarer A, Lenders V, Motik B (2017) Armatweet: Detecting events by semantic tweet analysis. In: Blomqvist E, Maynard D, Gangemi A, Hoekstra R, Hitzler P, Hartig O (eds) The semantic web, pp 138–153. Springer International Publishing, Cham

  11. Tam NT, Weidlich M, Zheng B, Yin H, Hung NQV, Stantic B (2019) From anomaly detection to rumour detection using data streams of social platforms. Proceedings of the VLDB Endowment 12 (9):1016–1029. https://doi.org/10.14778/3329772.3329778

    Article  Google Scholar 

  12. Akoglu L, McGlohon M, Faloutsos C (2010) oddball: Spotting anomalies in weighted graphs. In: Zaki M J, Yu J X, Ravindran B, Pudi V (eds) Advances in knowledge discovery and data mining, pp 410–421. Springer Berlin Heidelberg

  13. Hassanzadeh R, Nayak R (2013) A rule-based hybrid method for anomaly detection in online-social-network graphs. In: 2013 IEEE 25th international conference on tools with artificial intelligence, pp 351–357

  14. Garcia-Rubio C, Díaz Redondo RP, Campo C, Fernandez Vilas A (2018) Using entropy of social media location data for the detection of crowd dynamics anomalies. Electronics, 7(12). https://doi.org/10.3390/electronics7120380

  15. Fernandez Vilas A, Díaz Redondo RP, Ben Khalifa M (2019) Analysis of crowds’ movement using twitter. Comput Intell 35(2):448–472. https://doi.org/10.1111/coin.12205

    Article  MathSciNet  Google Scholar 

  16. Ferrari L, Rosi A, Mamei M, Zambonelli F (2011) Extracting urban patterns from location-based social networks. In: Proceedings of the 3rd ACM SIGSPATIAL international workshop on location-based social networks, pp 9–16

  17. Dokuz AS, Celik M (2017) Discovering socially important locations of social media users. Expert Syst Appl 86:113–124. https://doi.org/10.1016/j.eswa.2017.05.068

    Article  Google Scholar 

  18. Celik M, Dokuz AS (2017) Discovering socio-spatio-temporal important locations of social media users. J Comp Sci 22:85–98. https://doi.org/10.1016/j.jocs.2017.09.005

    Article  Google Scholar 

  19. Han J, Lee H (2015) Adaptive landmark recommendations for travel planning: Personalizing and clustering landmarks using geo-tagged social media. Pervasive and Mobile Computing 18:4–17. https://doi.org/10.1016/j.pmcj.2014.08.002

    Article  Google Scholar 

  20. Khatibi A, Belém F, da Silva APC, Almeida JM, Gonçalves MA (2020) Fine-grained tourism prediction: Impact of social and environmental features. Information Processing & Management 57 (2):102057. https://doi.org/10.1016/j.ipm.2019.102057

    Article  Google Scholar 

  21. Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes twitter users: Real-time event detection by social sensors. In: Proceedings of the 19th international conference on World Wide Web, pp 851–860

  22. Xu Z, Liu Y, Yen N, Mei L, Luo X, Wei X, Hu C (2017) Crowdsourcing based description of urban emergency events using social media big data. IEEE Transactions on Cloud Computing, pp 1–11. https://doi.org/10.1109/TCC.2016.2517638

  23. Pohl D, Bouchachia A, Hellwagner H (2016) Online indexing and clustering of social media data for emergency management. Neurocomputing 172:168–179. https://doi.org/10.1016/j.neucom.2015.01.084

    Article  Google Scholar 

  24. Arcaini P, Bordogna G, Ienco D, Sterlacchini S (2016) User-driven geo-temporal density-based exploration of periodic and not periodic events reported in social networks. Inf Sci 340-341:122–143. https://doi.org/10.1016/j.ins.2016.01.014

    Article  MathSciNet  Google Scholar 

  25. Hasan M, Orgun MA, Schwitter R (2019) Real-time event detection from the twitter data stream using the twitternews+ framework. Information Processing & Management 56(3):1146–1165. https://doi.org/10.1016/j.ipm.2018.03.001

    Article  Google Scholar 

  26. Zhang S, Mao X, Choo K-K R, Peng T, Wang G (2020) A trajectory privacy-preserving scheme based on a dual-k mechanism for continuous location-based services. Inf Sci 527:406–419. https://doi.org/10.1016/j.ins.2019.05.054

    Article  Google Scholar 

  27. Cai G, Lee K, Lee I (2018) Itinerary recommender system with semantic trajectory pattern mining from geo-tagged photos. Expert Syst Appl 94:32–40. https://doi.org/10.1016/j.eswa.2017.10.049

    Article  Google Scholar 

  28. Hu F, Li Z, Yang C, Jiang Y (2019) A graph-based approach to detecting tourist movement patterns using social media data. Cartogr Geogr Inf Sci 46(4):368–382. https://doi.org/10.1080/15230406.2018.1496036

    Article  Google Scholar 

  29. Yao H, Xiong M, Zeng D, Gong J (2018) Mining multiple spatial–temporal paths from social media data. Futur Gener Comput Syst 87:782–791. https://doi.org/10.1016/j.future.2017.08.003

    Article  Google Scholar 

  30. Yu D, Chen N, Jiang F, Fu B, Qin A (2017) Constrained nmf-based semi-supervised learning for social media spammer detection. Knowl-Based Syst 125:64–73. https://doi.org/10.1016/j.knosys.2017.03.025

    Article  Google Scholar 

  31. Yu R, He X, Liu Y (2015) Glad: Group anomaly detection in social media analysis. ACM Transactions on Knowledge Discovery from Data 10(2):18:1–18:22. https://doi.org/10.1145/2811268

    Article  Google Scholar 

  32. Giridhar P, Amin MT, Abdelzaher T, Wang D, Kaplan L, George J, Ganti R (2016) Clarisense+: An enhanced traffic anomaly explanation service using social network feeds. Pervasive and Mobile Computing 33:140–155. https://doi.org/10.1016/j.pmcj.2016.03.005

    Article  Google Scholar 

  33. Chua A, Marcheggiani E, Servillo L, Vande Moere A (2015) Flowsampler: Visual analysis of urban flows in geolocated social media data. In: Aiello L M, McFarland D (eds) Social informatics, pp 5–17. Springer International Publishing, Cham

  34. Santos BP, Rettore PHL, Ramos HS, Vieira LFM, Loureiro AAF (2018) Enriching traffic information with a spatiotemporal model based on social media. In: 2018 IEEE Symposium on computers and communications (ISCC), pp 00464–00469

  35. Huang C, Wu X, Wang D (2016) Crowdsourcing-based urban anomaly prediction system for smart cities. In: Proceedings of the 25th ACM international on conference on information and knowledge management, pp 1969–1972

  36. Sakkari M, D. Algarni A, Zaied M (2019) Urban crowd detection using som, dbscan and lbsn data entropy: A twitter experiment in new york and madrid. Electronics, 8(6). https://doi.org/10.3390/electronics8060692

  37. Xu Z, Cui G, Zhong M, Wang X (2019) Anomalous urban mobility pattern detection based on gps trajectories and poi data. ISPRS International Journal of Geo-Information 8(7):308:1–308:20. https://doi.org/10.3390/ijgi8070308

    Article  Google Scholar 

  38. Kim J, Bae J, Hastak M (2018) Emergency information diffusion on online social media during storm cindy in u.s. Int J Inf Manag 40:153–165. https://doi.org/10.1016/j.ijinfomgt.2018.02.003

    Article  Google Scholar 

  39. Jayarajah K, Subbaraju V, Weerakoon D, Misra A, Tam LT, Athaide N (2017) Discovering anomalous events from urban informatics data. In: Pham T, Kolodny MA (eds) Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR VIII, pp 70–83

  40. Wang S, Zhang X, Cao J, He L, Stenneth L, Yu PS, Li Z, Huang Z (2017) Computing urban traffic congestions by incorporating sparse gps probe data and social media data. ACM Trans Inf Syst 35(4):40:1–40:30. https://doi.org/10.1145/3057281

    Article  Google Scholar 

  41. Shin S, Choi M, Choi J, Langevin S, Bethune C, Horne P, Kronenfeld N, Kannan R, Drake B, Park H, Choo J (2017) Stexnmf: Spatio-temporally exclusive topic discovery for anomalous event detection. In: 2017 IEEE International conference on data mining (ICDM), pp 435–444

  42. Chae J, Cui Y, Jang Y, Wang G, Malik A, Ebert DS (2015) Trajectory-based Visual Analytics for Anomalous Human Movement Analysis using Social Media. In: Bertini E, Roberts JC (eds) EuroVis workshop on visual analytics (EuroVA), pp 43–47. The Eurographics Association

  43. Pan B, Zheng Y, Wilkie D, Shahabi C (2013) Crowd sensing of traffic anomalies based on human mobility and social media. In: Proceedings of the 21st ACM SIGSPATIAL international conference on advances in geographic information systems, pp 344–353

  44. Gabrielli L, Rinzivillo S, Ronzano F, Villatoro D (2014) From tweets to semantic trajectories: Mining anomalous urban mobility patterns. In: Nin J, Villatoro D (eds) Citizen in Sensor Networks, pp 26–35. Springer International Publishing, Cham

  45. Viswanath B, Bashir MA, Crovella M, Guha S, Gummadi KP, Krishnamurthy B, Mislove A (2014) Towards detecting anomalous user behavior in online social networks. In: 23rd USENIX Security Symposium (USENIX Security 14), pp 223–238. USENIX Association, San Diego, CA

  46. Cao N, Shi C, Lin S, Lu J, Lin Y, Lin C (2016) Targetvue: Visual analysis of anomalous user behaviors in online communication systems. IEEE Trans Vis Comput Graph 22(1):280–289. https://doi.org/10.1109/TVCG.2015.2467196

    Article  Google Scholar 

  47. Harikant N, Suma V (2017) Risk analysis in facebook based on user anomalous behaviors. In: 2017 International conference on intelligent computing and control systems (ICICCS), pp 967–971

  48. Dokuz AS (2019) Anomalous activity detection from daily social media user mobility data. Nigde Omer Halisdemir Universitesi Muhendislik Bilimleri Dergisi 8:638–651. https://doi.org/10.28948/ngumuh.535232

    Article  Google Scholar 

  49. Twitter (2019) Twitter developers web site. https://dev.twitter.com/

  50. Yamamoto Y (2019) Twitter4j java library. http://twitter4j.org/en/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Sakir Dokuz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dokuz, A.S. Social velocity based spatio-temporal anomalous daily activity discovery of social media users. Appl Intell 52, 2745–2762 (2022). https://doi.org/10.1007/s10489-021-02535-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02535-8

Keywords

Navigation