Skip to main content

Advertisement

Log in

An improved U-Net method for the semantic segmentation of remote sensing images

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Foremost deep neural network models trained in natural scenes cannot transfer and apply to remote sensing image semantic segmentation well. Studies have shown that fine-tuning methods containing model fusion can alleviate this dilemma. In this paper, we provide an approach used to improve U-Net and propose an end-to-end deep convolutional neural network (DCNN) combining the superiorities of DenseNet, U-Net, dilated convolution, and DeconvNet. We evaluated the proposed method and model on the Potsdam orthophoto data set. Compared with U-Net, our approach increases the PA, mPA, and mIoU evaluation indexes by 11.1%, 14.0%, and 13.5%, respectively; the segmentation speed increases by approximately 1.18 times and the number of parameters is 59.0% that of U-Net. The experiments demonstrate that for the semantic segmentation of high-resolution remote sensing images, using the combined dilated convolutions as the primary feature extractor, using the transposed convolution to restore the size of the feature maps, and reducing the number of layers is an effective method to improve the comprehensive performance of U-Net. This research enriches the models based on DCNNs and the modes of using DCNNs in a specific scene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Code Availability

Software applications or custom code generated or used during the study are available from the corresponding author by request.

References

  1. Ma L, Liu Y, Zhang X, Ye Y, Yin G, Johnson BA (2019) Deep learning in remote sensing applications:A meta-analysis and review. ISPRS J Photogramm Remote Sens 152:166– 177

    Article  Google Scholar 

  2. Zhang J, Lu C, Li X, Kim H -J, Wang J (2019) A full convolutional network based on DenseNet for remote sensing scene classification. Math Biosci Eng 16(5):3345– 3367

    Article  Google Scholar 

  3. Guo Y, Liu Y, Georgiou T, Lew MS (2018) A review of semantic segmentation using deep neural networks. Int J Multimed Inf Retr 7(2):87–93

    Article  Google Scholar 

  4. Yi Y, Zhang Z, Zhang W, Zhang C, Li W, Zhao T (2019) Semantic segmentation of urban buildings from vhr remote sensing imagery using a deep convolutional neural network. Remote Sens 11 (15):1774

    Article  Google Scholar 

  5. Zhang L, Zhang L, Du B (2016) Deep learning for remote sensing data:A technical tutorial on the state of the art. IEEE Geosci Remote Sens Mag 4(2):22–40

    Article  Google Scholar 

  6. Audebert N, Le Saux B, Lefèvre S (2017) Segment-before-detect:Vehicle detection and classification through semantic segmentation of aerial images. Remote Sens 9(4):368

    Article  Google Scholar 

  7. Noh H, Hong S, Han B (2015) Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE international conference on computer vision, pp 1520– 1528

  8. Guo M, Liu H, Xu Y, Huang Y (2020) Building Extraction Based on U-Net with an Attention Block and Multiple Losses. Remote Sens 12(9):1400

    Article  Google Scholar 

  9. Diakogiannis FI, Waldner F, Caccetta P, Wu C (2020) Resunet-a:a deep learning framework for semantic segmentation of remotely sensed data. ISPRS J Photogramm Remote Sens 162:94– 114

    Article  Google Scholar 

  10. Xu Z, Zhang W, Zhang T, Li J (2021) HRCNet:High-resolution context extraction network for semantic segmentation of remote sensing images. Remote Sens 13(1):71

    Article  Google Scholar 

  11. Chen B, Xia M, Huang J (2021) MFANet:a multi-level feature aggregation network for semantic segmentation of land cover. Remote Sens 13(4):731

    Article  Google Scholar 

  12. Ouyang S, Li Y (2021) Combining deep semantic segmentation network and graph convolutional neural network for semantic segmentation of remote sensing imagery. Remote Sens 13(1): 119

    Article  Google Scholar 

  13. Li X, Chen H, Qi X, Dou Q, Fu C-W, Heng P-A (2018) H-DenseUNet:hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans Med Imaging 37(12):2663–2674

    Article  Google Scholar 

  14. Ibtehaz N, Rahman MS (2020) MultiResUNet:Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw 121:74–87

    Article  Google Scholar 

  15. Alom MZ, Yakopcic C, Taha TM, Asari VK (2018) Nuclei segmentation with recurrent residual convolutional neural networks based U-Net (R2U-Net). In: NAECON 2018-IEEE national aerospace and electronics conference. IEEE, pp 228– 233

  16. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) Unet++:A nested u-net architecture for medical image segmentation. In: Deep Learning in medical image analysis and multimodal learning for clinical decision support, pp 3–11

  17. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B (2018) Attention u-net:Learning where to look for the pancreas. arXiv:180403999

  18. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

  19. Yu H, Yang Z, Tan L, Wang Y, Sun W, Sun M, Tang Y (2018) Methods and datasets on semantic segmentation:A review. Neurocomputing 304:82–103

    Article  Google Scholar 

  20. Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J (2017) A review on deep learning techniques applied to semantic segmentation. arXiv:170406857

  21. Ding H, Jiang X, Shuai B, Liu AQ, Wang G (2020) Semantic segmentation with context encoding and multi-path decoding. IEEE Trans Image Process. 29:3520–3533

    Article  Google Scholar 

  22. Zhou L, Zhang C, Wu M (2018) D-Linknet:linknet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. In: CVPR workshops, pp 182– 186

  23. Shang R, Zhang J, Jiao L, Li Y, Marturi N, Stolkin R (2020) Multi-scale adaptive feature fusion network for semantic segmentation in remote sensing images. Remote Sens 12(5):872

    Article  Google Scholar 

  24. Zhu H, Wang B, Zhang X, Liu J (2020) Semantic image segmentation with shared decomposition convolution and boundary reinforcement structure. Appl Intell, pp 1–14

  25. Lateef F, Ruichek Y (2019) Survey on semantic segmentation using deep learning techniques. Neurocomputing 338:321– 348

    Article  Google Scholar 

  26. Yu F, Koltun V (2015) Multi-scale context aggregation by dilated convolutions. arXiv:151107122

  27. Xie H, Chen Y, Shin H (2019) Context-aware pedestrian detection especially for small-sized instances with deconvolution integrated faster RCNN (DIF R-CNN). Appl Intell 49(3):1200– 1211

    Article  Google Scholar 

  28. Kampffmeyer M, Jenssen R (2019) Salberg A-B dense dilated convolutions merging network for semantic mapping of remote sensing images. In: 2019 joint urban remote sensing event (JURSE). IEEE, pp 1–4

  29. Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C (2016) The importance of skip connections in biomedical image segmentation. In: Deep learning and data labeling for medical applications. Springer, pp 179–187

  30. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708

  31. Zhang Z, Liu Q, Wang Y (2018) Road extraction by deep residual u-net. IEEE Geosci Remote Sens Lett 15(5):749–753

    Article  Google Scholar 

  32. Ronneberger O, Fischer P, Brox T (2015) U-net:Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer, pp 234–241

  33. Marmanis D, Schindler K, Wegner JD, Galliani S, Datcu M, Stilla U (2018) Classification with an edge:Improving semantic image segmentation with boundary detection. ISPRS J Photogramm Remote Sens 135:158–172

    Article  Google Scholar 

  34. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp 315– 323

  35. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers:Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034

  36. Ioffe S, Szegedy C (2015) Batch normalization:Accelerating deep network training by reducing internal covariate shift. arXiv:150203167

  37. Kingma DP, Ba J (2014) Adam:A method for stochastic optimization. arXiv:14126980

  38. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout:a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  39. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab:Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848

    Article  Google Scholar 

  40. Wang F, Xie J (2020) A context and semantic enhanced UNet for semantic segmentation of high-resolution aerial imagery. In: Journal of physics:conference series, vol 1. IOP Publishing, p 012083

Download references

Funding

This study was funded by National Key Research Program Project (No. 2016YFD0300610), the the Heilongjiang Province “Hundred Million” Engineering Science and Technology Major Special Project (No. 2019ZX14A04).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Z.S. and W.L.; methodology, Z.S.; software, W.L.; validation, W.L.; formal analysis, R.G. and Z.M.; investigation, Z.S. and W.L.; resources, R.G. and Z.M.; data curation, W.L.; writing—original draft preparation, W.L. and R.G.; writing—review and editing, W.L. and R.G.; visualization, W.L. and Z.M.; supervision, R.G.; project administration, Z.S.; funding acquisition, Z.S. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Rui Gao.

Ethics declarations

Conflict of Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Availability of data and material

The data and materials generated or used during the research are available from the corresponding authors upon request.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 8 Implementation details of AtrousDenseUDeconvNet

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Z., Li, W., Ma, Z. et al. An improved U-Net method for the semantic segmentation of remote sensing images. Appl Intell 52, 3276–3288 (2022). https://doi.org/10.1007/s10489-021-02542-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02542-9

Keywords

Navigation